Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

II SEMESTER M.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL 2019

SUBJECT: Optimization of Chemical Processes [CHE5201]

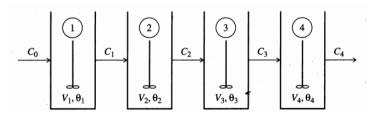
REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** questions.
- Missing data may be suitably assumed.
- Use of graph sheets permitted
- A trucking company has borrowed \$600,000 for new equipment and is contemplating three kinds of trucks. Truck A costs \$10,000, truck B \$20,000, and truck C \$23,000. How many trucks of each kind should be ordered to obtain the greatest capacity in ton miles per day based on the following data?

Truck A requires one driver per day and produces 2100 ton-miles per day.


Truck B requires two drivers per day and produces 3600 ton-miles per day.

Truck C requires two drivers per day and produces 3780 ton-miles per day.

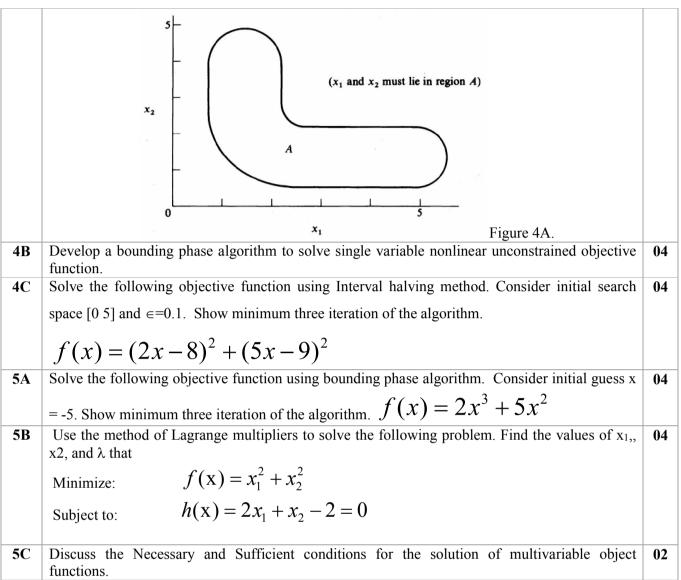
There is a limit of 30 trucks and 145 drivers.

Formulate a complete mathematical statement of the problem, and label each individual part, identifying the objective function and constraints with the correct units (\$, days, etc.). Make a list of the variables by names and symbol plus units. *Do not solve*.

As series of four well-mixed reactors operate isothermally in the steady state. Examine the figure. All the tanks do not have the same volume, but the sum of $V_i = 20 \text{ m}^3$. The component whose concentration is designated by C reacts according to the following mechanism: $r = -kC^n$ in each tank.

Determine the values of the tank volumes (real residence times of the component) in each of the four tanks for steady-state operation with a fixed fluid flow rate of so as to maximize the yield of product C_4 . Note $(V_i/q_i) = 9_i$, the residence time. Use the following data for the coefficients in the problem

n = 2.5; k = 0.00625 [m³/(kg mol)]^{-1.5} (s)⁻¹; The units for k are fixed by the constant 0.00625.


Evaluate the objective function, the variables, the equality constraints, the inequality constraints.

05

05

2A	Explain the gradient decent algorithm to solve multivariate linear regression problem.						
2B	$f(c) = 2c_1^2 + 2c_1c_2 + 1.5c_2^2 + 7c_1 + 8c_2 + 24$						
2C	Evaluate the nature of the convexity. Fit the following function for the density ' ρ ' as a function of concentration 'C', that is,	04					
	determine the value of ' α ' in $\rho=\alpha+1.33C$, given the following measurements for density and concentration:						
	$\rho (g/cm^3)$ $C (gmol/L)$						
	3.31 1.01 4.69 1.97 5.92 3.11 7.35 4.00						
	8.67 4.95						
3A	Rewrite the following linear programming problems in matrix notation. (i.e., $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ and $g(\mathbf{x}) = \mathbf{B} \mathbf{x} \ge C$) Minimize: $f(\mathbf{x}) = 3x_1 + 2x_2 + x_3$ $g_1(\mathbf{x}) = 2x_1 + 3x_2 + x_3 \ge 10$ Subject to: $g_2(\mathbf{x}) = x_1 + 2x_2 + x_3 \ge 15$	02					
3B	What is the feasible region for x given the following constraints and Sketch the feasible region for the following two-dimensional problem. $h_1(\mathbf{x}) = x_1 + x_2 - 3 = 0$ $h_2(\mathbf{x}) = 2x_1 - x_2 + 1 = 0$	04					
3C	An objective function is $f(x) = (x_1 - 8)^2 + (x_2 - 5)^2 + 16$ By inspection, you can find $x^* = [8 \ 51^T \text{ yields the minimum of } f(x)$. Show that x^* meets the necessary and sufficient conditions for a minimum.	04					
4A	Given a linear objective function, $f = x_1 + x_2$ Explain why a nonconvex region such as region A in Figure 4A causes difficulties in the search for the maximum off in the region. Why is region A not convex?	02					

CHE5201 Page 2 of 3

CHE5201 Page 3 of 3