Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

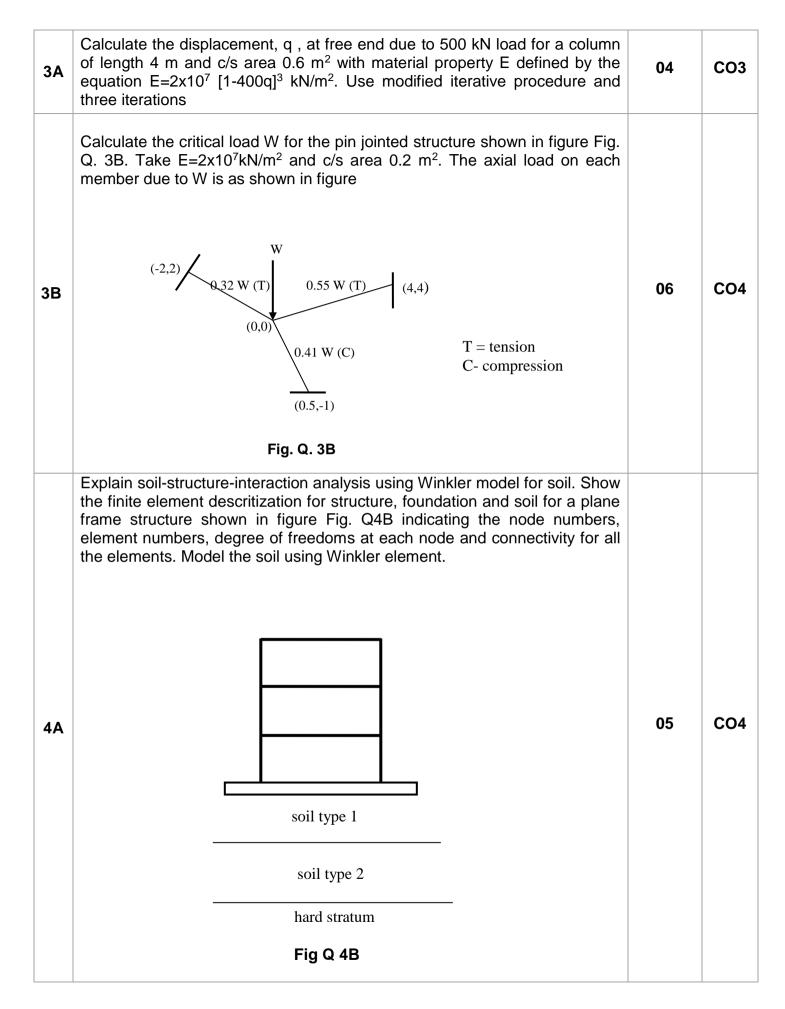
II SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, APR/MAY 2019

SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS II [CIE 5251]

REVISED CREDIT SYSTEM

(24 / 04 / 2019)

Time: 3 Hours


MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

Q. No		MARKS	COS
1A.	Calculate equivalent nodal load vector for eight noded brick element of size $0.6 \text{ m x } 0.4 \text{ m x } 0.5 \text{ m }$ due to 60 kN load acting at a distance of 0.2m, 0.3m and 0.25 m from node 1 along X –direction	03	CO1
1B.	Obtain the expression for matrix C for thick and thin plates in bending	04	CO1
1C.	Explain finite difference technique for the solution of dynamic equation. What is the advantage of finite difference technique compared to mode superposition technique	03	CO2
2A.	Obtain the expression for consistent mass matrix for two noded plane frame element in local direction and explain how the mass matrix is obtained in global direction	03	CO2
2B.	Obtain the Eigen values and Eigen vectors for the structure shown in figure Fig. Q. 2B. The dimensions of each element b = 0.3m and d = 0.6 m. Modulus of elasticity is equal to $2x10^7 \text{ kN/m}^2$, mass on horizontal members is 20 kNses ² /m ² and 7.85 kNsec ² /m ⁴ on vertical member. Also write the finite difference equation to obtain the response of the structure if sinusoidal load of intensity p(t)=20sin(12t) kN is acting as shown in figure. p(t) $p(t)$ $p(t)$ $p(t)$ $p(t)$ $p(t)$ $p(t)$ $p(t)$ $p(t)$	07	CO2
	Fig. Q 2B		

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

4B	Explain iterative technique for geometric nonlinearity	02	CO3
4C	With the example of plane frame structure explain the effects of numbering the nodes on band width	03	CO5
5A.	What is condensation technique? Obtain the equation of equilibrium for two noded plane frame element of length 2 m, EI= 1000 kN/m ² and AE=5000 kN with fixed support at node 1 and U,V degrees of freedoms at node 2. The element carries udl of 10 kN/m	05	CO5
5B.	Explain i)shape functions by degradation technique ii) convergence requirements of displacement model	05	CO5