Reg. No.

(A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH (POWER ELECTRONICS AND DRIVES)

END SEMESTER EXAMINATIONS, MAY 2019

SUBJECT: ADVANCED POWER ELECTRONIC CONVERTERS [ELE 5222]

REVISED CREDIT SYSTEM

Time: 3 H	ours	Date: 4 May 2019	Max. Marks: 50			
Instructions to Candidates:						
*	Answer ALL the question	r ALL the questions.				
❖]	Missing data may be suita	sing data may be suitably assumed.				

- 1A. Design a buck converter that has an input voltage of 3.3 V and an output voltage of 1.2 V. The output current is 4 A. The output voltage ripple must not exceed 2%. Specify the inductor value such that peak-to-peak variation in inductor current does not exceed 40% of the average value. Assume ideal components and switching frequency of 500 kHz.
- **1B.** A boost converter has the following parameters: $V_g = 20$ V, D = 0.6, L = 100 μ H, R = 50 Ω , C = 100 μ F and f_s = 15 kHz. Comment on the nature of inductor current and hence find the output voltage.
- **2A.** Design a flyback converter to produce an output of 36 V from a 3.3 V source. The output current is 0.1 A and the turns ratio N_2/N_1 is 16. The magnetizing current ripple should not exceed 40% of the average and the output voltage ripple to be limited to 2%. Assume continuous current mode, ideal components and switching frequency of 100 kHz.

What should be the new load resistance so as to make the converter operate in discontinuous current mode?

- **2B.** A full bridge dc-dc converter has the following parameters: $V_g = 30$ V, $N_P/N_S = 2$, D = 0.3, L = 0.5 mH, $R = 6 \Omega$, $C = 50 \mu$ F and $f_s = 10$ kHz. Determine average output voltage, minimum value of inductor current and the percentage output voltage ripple. Assume all components to be ideal.
- **3A.** A zero current switching dc-dc converter has the following specifications: P_0 = 30 W, V_0 = 15 V, Z_0 = 2.5 Ω , C_r = 0.02 μ F, the time between diode turn-off and the switch turn-off is 4 μ sec. Find the input voltage and the switching frequency for suitable implementations.
- **3B.** The Parallel loaded Resonant dc dc converter has following parameters: $V_g = 15 V$, $L_r = 1.3 \mu$ H, $C_r = 0.12 \mu$ F, $R_L = 10 \Omega$, $f_s = 500$ kHz. Determine output voltage of the converter. Estimate the new output voltage if the load resistance is changed to 5 Ω . **(05)**

(06)

(05)

(05)

(04)

(05)

- **4A.** Discuss in detail the basic constraints for the design of a high frequency inductor when the core geometrical factor K_g method is employed for the design.
- **4B.** A filter inductor is to be designed for the following specifications: Inductance $L = 50 \mu$ H, peak current $I_{max} = 11$ A, RMS current $I_{rms} = 10$ A, maximum allowed power loss $P_{max} = 2$ W. The ferrite core material available for this design has a saturation flux density $B_{sat} = 0.4$ T, but engineering margin requires that the maximum flux density B_{max} should not exceed 0.3 T. The cores that can be used in this design are listed in **Table 1.** The copper wires that can be used in this design are listed in **Table 1.** The copper wires that can be used in this design are listed in **Table 2**. The inductor winding is expected to reach a temperature of 100°C, so the appropriate resistivity of copper ρ is 2.3 x 10⁻⁸ Ω-cm. Assuming the fill factor K_u of the core as 0.5, core loss and skin and proximity effect to be neglected, select the smallest core whose K_g satisfies the design requirement. Also, determine the required length of the air gap, number of turns and an appropriate wire for this inductor.
- **5A.** Assuming ideal components and continuous conduction mode, develop the canonical circuit model of a buck-boost converter.
- **5B.** For the small-signal model of the buck-boost converter developed in Q 5A, derive the open loop control to output transfer function. *(03)*

Table 1					
<u>Core</u> #	<u>K</u> g (m⁵)	<u>A</u> c (cm²)	<u>W</u> _A (cm ²)	<u>(MLT)</u> (cm)	
1	2.2 x 10 ⁻¹²	0.62	0.256	4.4	
2	3.4 x 10 ⁻¹²	0.62	0.384	4.4	
3	8.4 x 10 ⁻¹²	1.19	0.333	5.62	
4	12.5 x 10 ⁻¹²	1.18	0.503	5.62	
5	20.3 x 10 ⁻¹²	1.7	0.471	6.71	
6	38.4 x 10 ⁻¹²	1.61	0.995	6.71	
7	82.2 x 10 ⁻¹²	1.96	1.61	7.52	
8	120 x 10 ⁻¹²	2.01	2.5	8.39	

Table 2				
AWG	Aw			
#	(cm ²)			
14	20.02 x 10 ⁻³			
15	16.51 x 10 ⁻³			
16	13.07 x 10 ⁻³			
17	10.39 x 10 ⁻³			
18	8.23 x 10 ⁻³			
19	6.53 x 10 ⁻³			
20	5.19 x 10 ⁻³			
21	41.2 x 10 ⁻³			

(05)

(05)

(07)