Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

(A constituent unit of MAHE, Manipal)

II SEMESTER M.TECH

(ENERGY SYSTEMS & MANAGEMENT / POWER ELECTRONICS & DRIVES) END SEMESTER EXAMINATIONS, APRIL/ MAY 2019

SUBJECT: ENERGY STORAGE DEVICES [ELE 5237]

REVISED CREDIT SYSTEM

Time	e: 3 Hours	Date: 2 May 2019	Max. Marks: {	50
Instructions to Candidates:				
	 Answer ALL the questions. 			
	Missing data may be suitably a	issumed.		
1A.	Define SOC (state of charge), DO a battery.	D (depth of discharge), Energy density and	l C-rate for (0 2	2)
1B.	What are the different methods methods? Also mention the limit	s to estimate SOC of a battery and expla tations of those methods.	in any two (0 4	4)
1C.	A battery has 96 cells in series p load voltage of 4.18 V and an int	er string with two parallel strings. Each ce ernal resistance of 2.8 m Ω .	ll has a no-	
	i) Determine the pack current a fully charged.	nd voltage under a 80 kW discharge if the	e battery is	
	ii) Determine the discharge effic	iency of the battery.	(02	2)
1D.	Define SOH (state of health) for a	a battery and explain the procedure to det	ermine it. (02	2)
2A.	A 24 kWh battery pack can be fas the approximate charge curren Assume that the battery pack vo	st charged from 0% to 60% SOC in 30 min. It and power in order to achieve this ch ltage is 360V.	Determine harge time. (02	2)
2B.	Determine the battery pack size consumption is 1000Wh/day, A bus voltage requirement is 48V. $\eta_{DC-DC} = 90\%$, $\eta_{Inverter} = 80\%$ Design Margin=1.25, Depth of Disc	zing for the given load conditions. DC lo C load energy consumption 10kWh/day a Given that the battery specifications are , Temperature correction=1, Days of Au ischarge=80%.	oad energy and the DC 12V, 50Ah. .tonomy=2, (04	4)
2C.	What are the different voltage V-J(mA/cm ²) characteristics?	losses occur in Fuel Cell and explain it by	y using the (02	2)
2D.	What are the different control te output power and explain it with	chniques associated with the Fuel Cell to r n a proper block diagram?	egulate the (02	2)
3A.	Explain about the working prir through a block diagram and me its advantages and disadvantage	nciple of Flywheel based energy storage ention its applications in power system. Al es.	technology so mention (0 4	4)
3B.	Explain about super conducting demerits?	magnetic energy storage and mention its	merits and (03	3)

- **3C.** Explain about the working principle of compressed air energy storage (CAES)? Also mention its advantages and disadvantages. *(03)*
- **4A.** Explain about Ultra capacitor as an energy storage device and mention its applications.
- **4B.** What is the importance of energy storage devices and explain the criteria for choosing a particular energy storage device.
- **4C.** Determine the beginning-of-life kilowatt-hour storage required in a BEV battery pack based on the following requirements: 6 years of operation, an average of 80 km of driving per day S_{day} over the 365 days of the year, daily charging, and an average battery output energy per kilometer E_{km} =200 Wh/km. Assume battery pack cycle lifetime index L = 3 and number of charge/discharge cycles for 100% depth of discharge $N_{100\%}$ =1000. Assume two parallel battery strings with 96 Li-ion cells per string, with a total number of cells N_{cell} =192, and a nominal voltage of 3.75 V per cell. Assume that the capacity of the battery pack will reduces to 80% at the end of life.
 - i. Determine the ampere-hours per cell.
 - ii. What are the vehicle ranges at beginning of life (BOL) and end of life (EOL)? (04)
- **5A.** The 2015 Nissan Leaf is traveling down a -8° slope at 120 km/h. The vehicle parameters of the Nissan leaf 2015 model are A=133.3 N, B=0.7094 N/ms⁻¹, C=0.491 N/(ms)⁻². Assuming calm conditions, how much regenerative power is available to brake the vehicle while maintaining a constant speed?
- **5B.** An electric vehicle has the following attributes: drag coefficient $C_D = 0.25$, vehicle cross Section A=2.5m², and available propulsion energy of $E_b = 20$ kWh. Let the density of air $\rho_{air} = 1.2$ kg/m³. Instantaneously at a vehicle speed of 120 km/h, calculate the aerodynamic drag force, power, and range, while driving in
 - i. calm conditions with no wind and
 - ii. Windy conditions with a 12 km/h tailwind.
- **5C.** A fully loaded bus has the following parameters: mass m = 20,000 kg, drag coefficient $C_D = 0.7$, vehicle cross section A=10m², and coefficient of rolling resistance $C_R = 0.008$. The nominal efficiency of the powertrain and transmission $\eta_{pt} = 85\%$, and the auxiliary load is 2 kW. Let the density of air $\rho_{air} = 1.2 \text{kg/m}^3$. The overall mass

and the auxiliary load is 2 kW. Let the density of air ρ_{air} =1.2kg/m². The overall mass of the fuel cell system (including the fuel cell, balance of plant, storage tanks, and mechanical bracketing) is 400 kg plus 80 kg per 5 kg of stored hydrogen.

- i. Determine the hydrogen mass, and the overall mass of the fuel cell system if the vehicle is to travel at a constant speed of 64 km/h for two work shifts of 16 h total, or 1024 km. The fuel cell plant efficiency is 50% for this operating condition.
- ii. Determine the mass of battery which would be required if the specific energy is 0.15 kWh/kg.
- iii. What is the range of the vehicle without passengers if the weight drops by 1/3?The fuel cell plant efficiency is 53% for this operating condition.

(05)

(03)

(02)

(02)

(04)