MANIPAL INSTITUTE OF TECHNOLOGY

Reg. No.

## SECOND SEMESTER M.TECH. (CONTROL SYSTEMS) END SEMESTER DEGREE EXAMINATION, APRIL/MAY - 2019

## SUBJECT: ROBUST & H<sub>00</sub> CONTROL [ICE 5249]

## TIME: 3 HOURS

/ANIPAL

(A constituent unit of MAHE, Manipal)

MAX. MARKS: 50

Instructions to candidates : Answer ALL questions and missing data may be suitably assumed.

- 1A Is it possible to find the norm of the system  $G(S) = \begin{bmatrix} \frac{1}{s-1} & 0\\ 0 & \frac{10}{s+1} \end{bmatrix}$ ? Justify your answer.
- 1B Find ||  $\|_{\infty}$  and ||  $\|_{2}$  norms of  $\mathbf{G}(\mathbf{s}) = \frac{1}{\mathbf{s}+\alpha} \frac{2}{\mathbf{s}+2\alpha}$  as a function of real parameter ' $\alpha$ '.
- 1C What do you mean by 2-norm and  $\infty$ -norm of the system? Find the 2-norm of the system  $\mathbf{G}(\mathbf{s}) = \begin{bmatrix} \frac{2}{s+10} \\ \frac{20}{s+1} \end{bmatrix}$ .
- 2A Show that set of all controllers of plant  $P \in R\mathcal{H}_{\infty}$  for which the feedback system shown in Fig. Q2A is internally stable is given by  $C = \left\{ \frac{Q}{1-PQ} : Q \in R\mathcal{H}_{\infty} \right\}$ .
- 2B Find  $\frac{e}{r}$ ,  $\frac{y}{d}$  and  $\frac{y}{r}$  ratios and illustrate the sensitivity transfer function S(s) and complementary sensitivity transfer function T(s) for the unity feedback system as shown in Fig. Q2A. Also, show that  $\overline{\sigma}(S(j\omega)) + \overline{\sigma}(T(j\omega)) \ge 1$ ,  $\forall \omega$ .
- 2C Prove that feedback system shown in Fig. Q2A is internally stable if and only if the two conditions: a) the transfer function 1 + PCF has no zeros in  $Res \ge 0$  and, b) there is no pole-zero cancellation in  $Res \ge 0$  when product *PCF* is formed.
- 3A Consider the standard feedback loop shown in Fig. Q2A, where  $P(s) = \frac{1}{s^2 1}$   $C(s) = \frac{s 1}{s + 1}$  and F(s) = 1, n = d = 0. Is the feedback loop stable? Justify your answer.
- 3B Assume that unity feedback system as shown in Fig. Q2A is internally stable and n = d = 0. Show that if input r(t) is the unit step then  $e(t) \rightarrow 0$  as  $t \rightarrow \infty$  if and only if sensitivity transfer function S(s) has at least one zero at the origin.
- 3C Derive robust performance condition for the feedback control system having additive uncertainty plant model.

(2+3+5)

(2+3+5)

4A Define all-pass and minimum phase transfer function with examples.

- 4B Derive robust stability condition for the feedback system shown in Fig. **Q4B.**
- 4C State and prove small gain theorem with neat diagrams.
- <sup>5A</sup> Consider nominal plant  $P(s) = \frac{1}{s+a_0}$  and actual plant model  $\tilde{P}(s) = \frac{1}{s+a}$  with  $a = a_0 + \delta \delta_m$ ,  $|\delta| \le 1$ . Assume suitable weighting function W and rewrite uncertain system in the form  $\tilde{P} = P(1 + \Delta W)^{-1}$ , where  $\Delta$  is stable transfer function given by  $\Delta = \delta$  with  $|\delta| \le 1$ .
- 5B Compute an internally stabilizing controller for the given plant model  $G(s) = \frac{1}{(s+1)(s+2)}$  in the unity feedback system so that output asymptotically tracks a ramp input.
- 5C For the given weighting functions  $W_{\Delta}$  and  $W_P$ , derive the conditions on loop function *L* for the regions *A*, *B* and *C* as shown in the Fig. Q5C to satisfy robust performance inequality  $|||W_pS| + |W_{\Delta}T|||_{\infty} < 1$ .



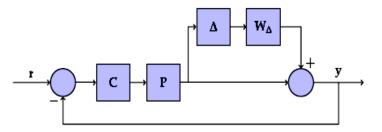
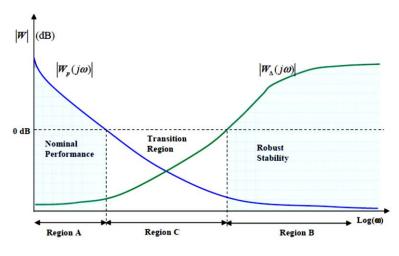


Fig. Q4B





\*\*\*\*\*

(2+3+5)

(2+3+5)