Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

II SEMESTER M.TECH. (COMPUTER AIDED ANALYSIS AND DESIGN) END SEMESTER EXAMINATIONS, APRIL 2019

SUBJECT: LUBRICATION OF BEARINGS [MME 5201] REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A.	Discuss the different types of lubricants? Explain the functions of a lubricant?	03
1B.	Distinguish between the 'iso-viscous' and 'viscous' thermal analysis of hydrodynamic bearings. Explain the 'iterative method' for thermal analysis.	04
1C.	Explain with a neat sketch the importance of the 'squeeze film' mechanism of pressure development in hydrodynamic bearings.	03
2A. 2B.	Interpret power loss in a bearing and derive the Petroff's equation. Using the Reynolds equation to start with, derive an expression for the	03
2C.	pressure distribution in a short journal bearing Explain hydrodynamic instability? How do you counter this instability?	04 03
3A.	Derive an expression for the radial load capacity of a rolling element bearing.	04
3B.	List the methods used to measure elastohydrodynamic film thickness. Explain any one method with a sketch of the set up.	03
3C.	Discuss the different materials and manufacturing methods used in rolling element bearings	03
4A.	Discuss how the Vogelphol parameter can improve the accuracy of numerical solutions of Reynolds Equation.	03
4B.	Examine how the various boundary conditions are satisfied in the numerical solution of Reynolds Equation, with neat sketches.	04
4C.	Explain the acceleration scheme used in the solution of Reynolds equation	03
5A.	For a capillary compensated bearing, evaluate the ratio of the capillary resistance to the bearing resistance is 0.5 for maximum stiffness.	04
5B. 5C.	List the different methods for deposition of solid lubricant. Explain the working of an aerostatic bearing with a sketch. What is the	03
	difference with a Hydrostatic bearing?	U

MME 5201 Page 1 of 1