		R	leg. No.												
and the second sec	MANIPAL INSTITUTE OF TECHNOLOGY (A constituent unit of MAHE, Manipal 576104) VI SEM B Tech (BME) DEGREE MAKE-UP EXAMINATIONS HUNE 2019														
	SUBJECT: MEDICAL IMAGE PROCESSING (BME 3203)														
	(REVISED CREDIT SYSTEM) Wednesday, 12 Th June 2019, 2:00 to 5:00 PM														
TI	TIME: 3 HOURS MAX. MARKS: 5											KS: 50			
	Instructions to Candidates:														
 Answer ALL questions. Read all the questions carefully, and answer concisely (<i><u>adequately</u></i>, but <u>to the point</u>). Draw labeled diagram wherever necessary 															
1.	(a)	A system is described by its input-output relationship: $y(m,n) = a x(m,n) $. Find out if the system is (i) linear, (ii) shift-invariant, and (iii) causal. Justify your answers mathematically.										(3)			
	(b)	A system is described by the input-output relationship: y(m,n) = ax(m,n) + bx(m-1,n) + c x(m+1,n) + dx(m,n-1) + ex(m,n-1).													
		(i) Find the convolution-mask associated with the system.										(1)			
		(ii) Find the expression for the frequency-response of the system and simplify it.									(1)				
	(c)	(c) It is often sufficient to derive the results in 1D, to understand the behavior of a 2D system – by a straight-forward extension. Accordingly:									1				
(i) Prove that: DSFT{ $x(m) * h(m)$ } = $X(e^{j\omega})H(e^{j\omega})$ (DSFT: discrete-space Fourier transform)										(2)					
		(ii) In Figure 1, a discrete L Determine the expression	SI system on for " λ "	with	ı imp	oulse	respo	onse	sequ	ence	h(m)) is sl	nown	•	(2)
		e ^{jon}	h(n)	1]	→	$\lambda e^{j\omega}$	m							
			rigure	1											

What would be the value of λ , if $h(n) = \delta(n)$? Justify your answer mathematically. (1)

- 2. (a) Describe the monochrome vision model with a suitable block-diagram. Explain the (5)content/working of each block.
 - (b) (i) What are the possible types of degradation associated with an image is compressed (3)using the DCT? Explain briefly, the sources of those types of degradation.
 - (ii) Indicate two advantages, and two disadvantages, of compressing an image by thresholding the DCT coefficients.
- 3. (a) (i) Find the output of the 3×3 Median filter (MF) on the image in Fig. 2.
 - (ii) By marking the appropriate pixels on the result (filtered image), list the drawbacks of the 3×3 median filter.
 - (iii) Suggest a solution to overcoming the drawbacks of the 3×3 median filter.

	10	10	10	7	7	7	7	7	0
(3)	10	10	10	7	0	7	10	7	0
	10	10	10	7	7	7	7	7	0
	10	10	10	10	10	10	10	10	0
(1)	7	7	7	7	7	7	7	7	0
	7	7	7	7	7	7	7	7	0
	8	7	6	5	4	3	2	1	0
	8	7	6	5	4	3	2	1	0
(1)	8	7	6	5	4	3	2	1	0

Figure 2

- (iv) Demonstrate, by showing relevant pixels in your result, the correctness of the (2)solution you have proposed in answer to question (iii).
- (b) 0.2 Find the output of the averaging filter (whose mask is (3)shown in the adjacent figure ie.g., Fig. 3) on the 0.2 0.2 0.2 Figure 3 image in Fig. 2. 0.2
- 4. (a) The formula for *reconstructing an image* from a set of projections $\{p_{\theta}(t)\}$, is given

in two steps:
$$f(x, y) = \int_{0}^{\pi} \tilde{p}(x\cos\theta + y\sin\theta)d\theta$$
, $\forall (x, y) \in ROI$ (Region of Interest)
where: $\tilde{p}(t) = \int_{-\infty}^{\infty} p(\alpha)h(t-\alpha)d\alpha$

(i) Discretize the formula.

(ii) Based on the discretized formula, write the steps involved in *reconstructing an image* (3) on a discrete grid, from a finite set of discrete projections. Use linear interpolation when required.

(2)

(2)

		(iii) Write a <i>pseudo code</i> to <u>implement the steps you have given in answer to the</u> <u>preceding question.</u>	(3)
	(b)	What is the main difference between the CBP algorithm for reconstruction from fan- beam, and that for reconstruction from parallel-beam? Explain.	(2)
5.	(a)	(i) Explain the system associated with, and the working of a 3 rd generation CT system.	(2)
		(ii) What are the two advantages of the 4 Th generation CT system, over that of the 3 rd generation system.	(1)
	(b)	Explain "electronic collimation" in the context of emission CT.	(2)
	(c)	In the context of Magnetic resonance imaging (MRI):	
		(i) Draw the magnetic vector diagram that explains the dynamics of the fields on the application of <u>a 90⁰ pulse</u> , and explain the same.	(3)
		(ii) Explain the functioning of a <i>frequency-encoding gradient</i> , towards resolving spatial locations.	(2)