Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH. END SEMESTER MAKE UP EXAMINATIONS 2019

SUBJECT: CHEMICAL REACTION ENGINEERING 2 [CHE 3202]

REVISED CREDIT SYSTEM (12/06/2019)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

A liquid phase reaction, $2A \rightarrow B$, $-r_A = kC_A^2$ for which $k = 0.01 \text{ dm}^3/\text{mol.min}$ is carried out 1A. at a temperature of 320 K. The feed is pure A with $C_{A0} = 8 \text{ mol/dm}^3$. The reactor is non ideal and perhaps can be modeled as two CSTR's with interchange. The reactor volume is 1000 dm³ and feed rate is 25 dm³/min. A tracer test was run on this reactor and the results are given below. 06 82.2 70.6 60.9 45.6 26.3 15.7 $C mg/dm^3$ 112 95.8 34.5 7.67 2.55 0.9 t, min 0 10 15 20 30 40 50 70 100 150 200 5 What conversions can you expect from an Ideal PFR and CSTR? $N_0 = 100 \text{ g}, v = 25 \text{ dm}^3/\text{min}.$ 1**B**. We wish to know the bounds on the conversion for the RTD of this reactor (Question 1A). 04 What are these bounds? 2A. Say a reaction $A + 2B \rightarrow 2C + D$ is conducted in an adiabatic CSTR, what is the reactor volume and space time necessary to achieve 40% conversion of A? The reaction rate is first order in A and second order in B. Data: $\Delta H_R = -370.1 \text{ kJ/mol}$ $T_0 = 303 \text{ K}$ 06 $Cp_A = 84.5 \text{ J/(mol K)}$ $F_{AO} = 10 \text{ mol/min}$ $Cp_B = 137 \text{ J/(mol K)}$ $F_{BO} = 30 \text{ mol/min}$ $Cp_C = 170 \text{ J(mol K)}$ $v_0 = 1000 \text{ L/min}$ $Cp_D = 75 \text{ J/(mol K)}$ $C_{AO} = 0.01 \text{ mol/L}$ $k = 0.090 \exp \left[(40 \text{ kJ/mol})/\text{R} (1/303 - 1/\text{T}) \right] (\text{L/mol})^2 (\text{min})^{-1}$ Compare and contrast Physisorption and chemisorption. 2B. 04 With a neat sketch derive the relation between time and conversion for solid shrinking 3A. 06 particle when gas film is the rate controlling step. **3B**. Derive the BET expression for determining the surface area of a particle. 04

4A.	Calculate the time required for complete burning of particles of graphite (size: $R_0 = 5$ mm, $\rho_B = 2.2$ g/cc) in an 8% oxygen stream at 900°C and 1 atm. Assume high gas velocity. Rate constant k'' = 20 cm/s.	06
4B.	Write a note on slurry reactors kinetics.	04
5A.	Find an interim rate expression for the following catalytic reaction when adsorption is the rate controlling step. A \rightarrow B.	06
5B.	Explain in brief with plots the eight different cases based on two-film theory in fluid-fluid contact systems.	04