MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH CIVIL ENGINEERING END SEMESTER EXAMINATIONS

APRIL/MAY-2019

SUBJECT: ADVANCED REINFORCED CONCRETE DESIGN [CIE 4014]

Date of Exam: 30/04/2019

Time of Exam: 2:00 pm to 5:00 pm

Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions

♦ Usage of IS 456:2000, IS 3370- Part IV and SP16 is allowed

✤ Assume M20 concrete and Fe415 steel for all questions

Missing data , if any, may be suitably assumed

1A.	Determine factored bending moments for an interior flat slab panel of size 7mX 7m for a Live Load of 4 kN/m ² and Floor Finish of 1 kN/m ² and dead load due to self weight. The slab is supported by columns of size 0.7X 0.7m.	8	CO2
1B.	Explain punching shear calculation in flat slabs. Write the allowable shear stress in flat slabs as per limit state method.	2	CO2
2A.	A grid floor is to be designed for a floor of dimension $10m \times 16m$. The spacing of grid beams are at $1m c/c$ and top slab thickness is 90mm. Determine the maximum design bending moments and shear forces in the grid beams in both directions. The LL on the slab is 4 kN/m^2 and floor finish is 1 kN/m^2 . Ignore self-weight of grid beams.	4	CO3
2B.	Proportion an isolated footing for a factored column load of 500kN. Size of column is $300 \text{ mm} \times 300 \text{ mm}$. Determine thickness of footing required and evaluate the stresses in soil if SBC of the soil is 180 kN/m^2 .	6	CO3
3 A	With neat sketch, explain the structural behavior of a cantilever retaining wall.	3	CO4
3B	Design and detail the reinforcements for the cantilever retaining wall shown in Fig.Q3B. Bending moments at various sections are given with the figure. A shear key of $0.5 \text{m} \times 0.5 \text{m}$ is provided.	7	CO4
4 A	Design a circular water tank to store 1,00,000 litres of water. The clear area available on the site is $7m \times 12m$. Assume the water tank rests on a firm ground and walls are rigidly connected to base.	7	CO5
4 B	A flexible base water tank has a diameter of 5m and thickness of 150mm. If it is provided with 0.3% of hoop steel, then determine the maximum height of water permissible in tank.	3	CO5
5A	Determine the maximum hoop tension and corresponding reinforcement required in vertical walls of a circular bunker of size 3m diameter and 4m height when it is used to store coal of density 9kN/m ² and angle of repose 30°.	5	CO5
5B	Derive Rankine Grashoff formula for load distribution in a rectangular slab. Determine bending moment in both direction of a simply supported panel of size $4m \times 6m$ subjected to a uniform load of $5kN/m^2$.	3	CO1
5C	Explain the differences between cantilever and counterfort retaining walls.	2	CO4

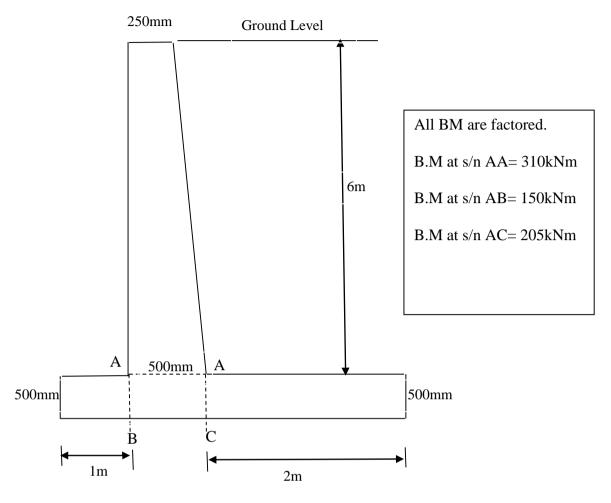


Fig. Q3B