Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

VI SEMESTER B.TECH (CIVIL) END SEMESTER EXAMINATIONS APRIL/MAY 2019

SUBJECT: WASTE WATER MANAGEMENT [CIE 3202]

Date of Exam: 27/4/2019

Time of Exam: 2:00-5:00pm

Max. Marks: 50

Instructions to Candidates:

Answer ALL the questions & missing data may be suitably assumed

1A.	Explain with a neat flow sheet ,various processes involved in sludge treatment and disposal	5	CO2		
1B.	With a neat diagram explain the working of rotating biological contactor				
2A	A grit chamber having rectangular cross section has to be designed for a 18MLD flow of sewage. The diameter of the smallest grit particles that settles is 0.2mm and the specific gravity of settling particles is 2.65. The average temperature is 20°C. Assume width of the approach channel as 1m. Determine the dimensions of grit chamber.				
2B.	A 5-day BOD of a waste water has been found to be 500mg/L . If K _(base e) = 0.23/day. What is the ultimate BOD of waste water? What proportion of BOD ultimate would remain un-oxidized after 18 days				
2C.	Differentiate between Suspended growth system and Attached growth system				
3A.	 i. Design a high rate trickling filter for treating sewage of 15 MLD with a raw sewage BOD₅ of 330 mg/L. A 30% BOD is satisfied in primary treatment. Assume a recirculation ratio of 1.5, depth of filter as 1.2m and efficiency of the filter as 85%. Also calculate the effluent BOD5. ii. What is the significance of recirculation of treated effluent to filter? 				
3B.	Explain in detail about the design procedure which needs to be adopted while designing screen chamber				
3C.	What are stabilization ponds? Explain the algae – bacteria symbiosis in a stabilization pond with a neat sketch.				
4 A	A completely mixed ASP is used to treat a wastewater flow of 1 MLD having a BOD ₅ of 200 mgL ⁻¹ . The biomass concentration in the aeration tank is 2000 mgL ⁻¹ and the concentration of net biomass leaving the system per day is 50 mgL ⁻¹ . The aeration tank has a volume of 200 m ³ . It has been found that the effluent solids concentration is zero. i. What is the Hydraulic Retention Time of the wastewater in aeration tank in hrs? ii. What is the average time for which biomass stays in the system?				
4 B .	Define the followingi. Hydraulic Retention Timeii. Volumetric BOD Loading Rateiii. Volumetric BOD Loading Rate	4	CO4		
4C	Briefly explain the process mechanism of ASP with flow sheet?	2	CO4		

The WWTP in the Manipal campus discharges $0.4375 \text{ m}^3/\text{s}$ of secondary effluent into River Swarna whose minimum flow rate is $100 \text{ m}^3/\text{s}$. $\boxed{WWTP}{\text{ effluent}}$ Stream water effluent $\boxed{\text{Stream water}}$ $\boxed{\text{Dobs}(\text{mgL}^{-1})(\text{at } 20 ^\circ\text{C})}$ $20 15$ $\boxed{\text{Dobs}(\text{mgL}^{-1})(\text{at } 20 ^\circ\text{C})}$ $200 1$ $\boxed{\text{Dissolved oxygen (mgL}^{-1})}$ 5 $\boxed{\text{COs}}$ 5B.Oxygen consumption rate (k_d or K') (day^{-1}) 0.3 0.3 0.7 $\boxed{\text{Using above information, calculate the following:}}$ 1 $\boxed{\text{Temperature, dissolved oxygen (DO) and BOD of the mixture.}}$ 5 $\boxed{\text{COs}}$ 2) Initial dissolved oxygen deficit at the place of mixing. 3 $\boxed{\text{Critical oxygen deficit (D_c) and Critical time (t_c).}}$ $\boxed{\text{Saturated dissolved oxygen concentration in stream before discharge is 10.07 mg/L at }$	5A.	With the help of a graph, explain the DO behavior at the downstream side of a river when an organic contaminant is discharged. Also discuss in detail, the different zones during self-purification process with a neat sketch.				
15°C. Use temperature coefficients, θ = 1.135 for k _d and θ =1.024 for k _r for applying temperature corrections for these two constants	5B.	The WWTP in the Manipal campus discharges 0. River Swarna whose minimum flow rate is 100 m Temperature (°C) BOD ₅ (mgL ⁻¹) (at 20 °C) Dissolved oxygen (mgL ⁻¹) Oxygen consumption rate (k _d or K') (day ⁻¹) Oxygen re-aeration rate (k _r or R')(day ⁻¹) Using above information, calculate the following 1) Temperature, dissolved oxygen (DO) and BOI 2) Initial dissolved oxygen deficit at the place of 13 3) Critical oxygen deficit (D _c) and Critical time (for (Saturated dissolved oxygen concentration in stration) 15°C. Use temperature coefficients, $\theta = 1.135$ for temperature corrections for these two constants	$4375 \text{ m}^{3}/\text{s}$ $WWTP$ effluent 20 200 2 \vdots D of the mi mixing. t _c). eam before or k _d and	of secondary effluent into Stream water 15 1 80% of saturation level 0.3 0.7 xture. e discharge is 10.07 mg/L θ =1.024 for k _r for applying	5 at ng	CO5