Reg. No.					
----------	--	--	--	--	--

VI SEMESTER B.TECH. (INFORMATION TECHNOLOGY/COMPUTER AND COMMUNICATION ENGINEERING) MAKEUP EXAMINATIONS, JUNE 2019

SUBJECT: PROGRAM ELECTIVE III- INFORMATION RETRIEVAL [ICT 4006]

REVISED CREDIT SYSTEM

(18 /6/2019) Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.
- **1A.** Explain various dictionary compression techniques with examples. Also discuss the limitations of each compression technique.
- **1B.** Compute the edit distance between the two strings ALGORITHM and ALTRUISTIC
- **1C.** Consider an information need for which there are 5 relevant documents in the collection. Their top 10 results are judged for relevance as follows (the leftmost item is the top ranked search result).

NRNRRNRNRN

Compute the Mean Average Precision (MAP) of the system.

2

5

3

- **2A.** Consider a query (q) and a document collection consisting of three documents. Rank the documents using vector space model. Assume tf-idf weighing scheme.
 - q: "six ten eleven"

ICT 4006

- d_1 : "nine eight six two seven one eleven"
- d_2 : "nine eight six three seven one five"
- d_3 : "four eight ten two seven one ten eleven"

Note: List the vector elements in alphabetical order.

5

3

2

2B. Table Q.2B shows how two human judges rate the relevance of a set of 12 documents to a particular information need (0 = nonrelevant, 1 = relevant). Let us assume that an IR system has been developed which for a query returns the set of documents $\{4, 5, 6, 7, 8\}$.

Table Q.2B

Doc Id	1	2	3	4	5	6	7	8	9	10	11	12
Judge 1	0	0	0	1	1	0	1	1	0	0	0	1
Judge 2	1	1	1	1	0	0	0	0	1	0	0	1

- i. Calculate the kappa measure between the two judges.
- ii. Calculate precision, recall, and F_1 of the system if a document is considered relevant if either judge thinks it is relevant.

2C From the following sequence of γ -coded gaps, reconstruct first the gap sequence and then the postings sequence: 11011110111111000111010111111011011

3A. With a neat diagram, explain the distributed architecture of a web crawler **5**

Page 1 of 2

3B.	Consider the three documents $(d_1, d_2 d_3)$	
	d ₁ ="pen drive damaged in fire"	
	d ₂ ="Tom Cruise delivers the pen drive."	
	d ₃ =" Tom Cruise at MI bureau"	
	and the query q="pen drive"	
	Assume that the search engine uses term-frequency weighting scheme. Using Rocchio method, find reformulated query after two iterations. Assume $\alpha=1$ $\beta=1$ and $\gamma=1$. Relevant and Non-Relevant document sets are as below- $D_r=\{d_1,d_2\}$ $D_{nr}=\{d_3\}$ Note: Ignore the stop words- the, in, at. (List the vector elements in alphabetical order).	3
3C.	What is Boolean retrieval model? Consider the following document collection.	
	Doc 1: new home sales top forecasts	
	Doc 2: home sales rise in july	
	Doc 3: increase in home sales in july	
	Doc 4: july new home sales rise	
	 Draw the term-document incidence matrix for this document collection. 	
	Answer the query: home AND sales AND (july OR rise).	2
4A.	What is singular value decomposition (SVD)? Find SVD for the following matrix.	
	$\begin{bmatrix} 1 & 2 \end{bmatrix}$	
	2 1	5
4B.	Consider a query (q) and a document collection consisting of 3 documents. Rank the	
TD.	documents using probabilistic model.	
	q: "bear cow tiger"	
	d_1 : "cat elephant horse cat"	
	d ₂ : "cat lion cow deer"	^
	d ₃ :"cat deer elephant"	3
4C.	Write an algorithm for Blocked Sort-Based Indexing.	2
5A.	Consider a web graph with three nodes 1, 2, 3 and 4. The links are as follows: $1\rightarrow 2$, $2\rightarrow 1$,	
	$2\rightarrow 3$, $2\rightarrow 4$, $3\rightarrow 2$, $3\rightarrow 4$, $4\rightarrow 2$ and $1\rightarrow 3$. Compute PageRank after six iterations for each of	
	the four pages. Assume that at each step of the PageRank random walk, we teleport to a	5
	random page with a probability 0.2.	5
5B.	Which ideas can be exploited to reduce the space for storing URL links in adjacency table	3
	of a connectivity server?	0.570
5C.	What do you understand by the term Shingling? Why is it used in web search?	2