MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SIXTH SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION JUNE 2019

SUBJECT: LINEAR ALGEBRA FOR SIGNAL PROCESSING (ECE - 4008)

TIME: 3 HOURS

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Given matrix A and vector b as follows:

$$A = \begin{bmatrix} 2 & 2 & 4 \\ 8 & 9 & 19 \\ 2 & 2 & 5 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

i) Perform *LU* factorization of *A*.

ii) Solve the system Ax=b by solving the two triangular systems Lc=b and Ux=c.

- 1B. Let $X=3v_1+2v_2-v_3$ with respect to the basis vectors $v_1=\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, $v_2=\begin{bmatrix} 2 & 3 & 2 \end{bmatrix}^T$ and $v_3=\begin{bmatrix} 1 & 5 & 4 \end{bmatrix}^T$. Find the coordinates of vector X with respect to a new basis defined by $u_1=\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $u_2=\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$ and $u_3=\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$
- 1C. Express the vector $v = [1 25]^T$ as a linear combination of the vectors $e_1 = [1 \ 11]^T$, $e_2 = [1 \ 23]^T$, and $e_3 = [2 11]^T$.

(4+3+3)

2A. Given that a received signal is sum of a single sinusoidal frequency and white noise, and given its autocorrelation samples as below, estimate the frequency of the single sinusoidal in this signal.

r(-1) = 2.0140 - j3.4560, r(0) = 4.3960 and r(1) = 2.0140 + j3.4560

- 2B. Consider the signal $r(t) = \sqrt{T/3}$ for 0 < t < T/3 and 0 for all other values of *t*. Let the set $S_1 = \{r(t), r(t-(T/3)), r(t-(2T/3))\}$ form an orthonormal basis for a vector space *V* (spanned by this basis). Now consider another set $S_2 = \{-r(t), \sqrt{2} r(t-(T/3))+r(t-(2T/3)), r(t-(2T/3))\}$ which forms an orthonormal basis for the *same* vector space *V*. Give the transition matrix for a change of basis from S_2 to S_1 .
- 2C. The eigenvalues of a projection matrix can take only two values. Which are these values? Prove your answer.

(4+3+3)

3A. Consider the matrix *A* as given below.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$

i) Is *A* a circulant matrix?

ECE - 4008

- ii) Multiply any one column of *A* by a 3 point DFT matrix.
- iii) Compute the eigenvalues of *A*.
- iv) Comment on the results of (ii) and (iii) above.
- 3B. Perform *QR* factorization of the matrix *A* given below and solve the system Ax=b using the *QR* factorization method where $b = [7 \ 11 \ 17]^{T}$.

$$A = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 3 & 4 \\ 1 & 0 & 5 \end{bmatrix}$$

3C. Let $X=3v_1+2v_2-v_3$ with respect to the basis vectors $v_1=\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, $v_2=\begin{bmatrix} 2 & 3 & 2 \end{bmatrix}^T$ and $v_3=\begin{bmatrix} 1 & 5 & 4 \end{bmatrix}^T$. Find the coordinates of vector X with respect to a new basis defined by $u_1=\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $u_2=\begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$ and $u_3=\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$

(4+3+3)

- 4A. Consider a vector space V spanned by the set $\{\exp(j2\pi x/\Lambda), \exp(-j2\pi x/\Lambda), \exp(j4\pi x/\Lambda), \exp(-j4\pi x/\Lambda), 5\cos((2\pi x/\Lambda) + \pi/3)\}$
 - i) Is $10\cos((4\pi x/\Lambda)+2\pi/3)$ an element of V?
 - ii) Give a basis set for V

iii) In the basis you have given, what are the coordinates of $6\sin((4\pi x/\Lambda) + 2\pi/3)$?

NOTE: All *x* dependent functions in this question are in the interval $-\Lambda/2$ to $\Lambda/2$.

4B. Use the Gauss-Jordan method to find the inverse of the matrix A given as

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix}$$

4C. Let *a* and *b* be two vectors in the three dimensional Cartesian space with *x*, *y* and *z* coordinates as a_x , a_y , and $a_z \& b_x$, b_y , and b_z respectively. If the vector cross product (aXb) between these two vectors can be expressed as the product *Ac* where *A* is a matrix with its elements chosen appropriately from the set of coordinates of vector *a*, and *c* is a vector with its elements as the coordinates of vector *b*. i.e $c = [b_x, b_y, b_z]^T$, which is the matrix *A*?

(4+3+3)

5A. Perform a singular value decomposition on the matrix *A* given below and with the help of this decomposition determine its Moore-Penrose pseudo inverse.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & -2 \end{bmatrix}$$

- 5B. Demonstrate the relationship between linear least squares solution of over determined systems and the concept of vector projection.
- 5C. Find the eigenvalues and eigenvectors of a matrix A that satisfies the following relations

i)
$$A\begin{bmatrix} -0.6535\\0.7569\end{bmatrix} = \begin{bmatrix} 0.8604\\-0.9966\end{bmatrix}$$
 and ii) $A\begin{bmatrix} -0.4204\\-0.9073\end{bmatrix} = \begin{bmatrix} -2.2351\\-4.8240\end{bmatrix}$