AANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SIXTH SEMESTER B.TECH. (E & C) DEGREE END SEMESTER EXAMINATION **APRIL/MAY 2019**

SUBJECT: LINEAR ALGEBRA FOR SIGNAL PROCESSING (ECE - 4008)

TIME: 3 HOURS

Instructions to candidates

- Answer ALL questions.
- Missing data may be suitably assumed. •
- 1A. A linear system has an input-output relationship given by y = ax+b. Here x is the input and y is the output. An input-output table as given in **Table 1A** is available. Obtain a least squares estimate of a and b. Use QR

- Can the set of vectors $[1 \ 8 \ 11]^T$, $[1 \ 2 \ 1]^T$, and $[-1 \ 1 \ 4]^T$ be a basis for \mathbb{R}^3 ? Give reasons for 1B. your answer.
- 1C. Provide a basis for the vector space composed of all the 3X3 matrices

(4+3+3)

2A. In a tournament, six sports teams E_1, E_2, \dots, E_6 are divided into two groups of three each. Each team plays 21 games in all; 6 against each team in its own group, 3 against the others. The results of the competition are formulated as a matrix given below

Teams	E_1	E_2	E_3	E_4	E_5	E_6	Wins
E_1	0/21	3/21	0/21	0/21	1/21	2/21	6
E_2	3/21	0/21	2/21	2/21	2/21	1/21	10
E_3	6/21	4/21	0/21	2/21	1/21	1/21	14
E_4	3/21	1/21	1/21	0/21	2/21	2/21	9
E_5	2/21	1/21	2/21	4/21	0/21	2/21	11
$L E_6$	1/21	2/21	2/21	4/21	4/21	0	13 J

Rank the teams and order them from best to worst. The eigenvalues and eigenvectors of the above matrix are given in **Table 2A**.

- 2 2B. -11 . Obtain a basis for its null-space. Is this a rank deficient Consider the matrix 1 0 2 3 matrix?
- Compute L_1, L_2 , and L_∞ norm of the vector $[4 \ 4 \ 4 \ 4 \ 4]^T$. 2C.

(4+3+3)

factorization.						
Table 1A						
x	у					
2	1.1					
6	3.19					
4	1.98					
1 T 1	г <u>1</u> 1 4171					

MAX. MARKS: 50

- 3A. Obtain the projection matrix *P* to project vectors in \mathbb{R}^3 on to the plane $y = x, -\infty < z < \infty$.
- 3B. Consider an LTI system which has an impulse response h(t). Show that $e^{j\omega t}$ is an eigensignal (eigen-function) of this system. What is the corresponding eigenvalue?
- 3C. With the help of Schwarz's inequality, relate the geometric mean and arithmetic mean of two scalars.

4A.
Given
$$U = \begin{bmatrix} -0.38 & 0.22 & -0.89 \\ -0.49 & -0.86 & -7.75 \times 10^{-17} \\ -0.77 & 0.44 & 0.447 \end{bmatrix}$$
, $\Sigma = \begin{bmatrix} 5.7 & 0 \\ 0 & 1.17 \\ 0 & 0 \end{bmatrix}$, and
 $V = \begin{bmatrix} -0.34 & 0.94 \\ -0.94 & -0.34 \end{bmatrix}$ as result of SVD of a matrix A, what is A?

- 4B. Classify the following matrices into positive definite, positive semidefinite and indefinite $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ -2 & -6 \end{bmatrix}$
- 4C. Given A is a 3x3 matrix with eigenvalues -1, 2, and 3, find the determinant of A^{T} , trace of A^{-1} , and determinant of A 4I where I is a 3x3 identity matrix.

(4+3+3)

(4+3+3)

5A. As part of estimating the frequency content of a narrowband signal using the MUSIC algorithm, the correlation matrix R arrived at is as given below

$$R = \begin{bmatrix} 100.1 & 80.9 - j58.8\\ 80.9 + j59.8 & 100.1 \end{bmatrix}$$

Determine the noise variance σ^2 and estimate the lone frequency content in the signal. Take the sampling frequency as 10^5 Hz.

- 5B. A vector \mathbf{x} has coordinates (3,2,-1) with the basis as: $\mathbf{u_1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$, $\mathbf{u_2} = \begin{bmatrix} 2 & 3 & 2 \end{bmatrix}^T$, and $\mathbf{u_3} = \begin{bmatrix} 1 & 5 & 4 \end{bmatrix}^T$. What will be the coordinates of \mathbf{x} if the basis is changed to $\mathbf{v_1} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$, $\mathbf{v_2} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix}^T$, and $\mathbf{v_3} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$?
- 5C. Find the Moore-Penrose pseudo inverse of $\begin{bmatrix} 1\\2\\5 \end{bmatrix}$.

(4+3+3)

Table 2A											
Eigenvalues	Eigenvectors										
0.475	0.259	0.380	0.472	0.351	0.428	0.509					
0.012	- 0.022	- 0.330	- 0.769	0.315	0.264	0.361					
- 0.111+ j0.117	- 0.284 + j0.398	0.124 - j0.217	0.55	0.116 + j0.213	0.07 - j0.215	- 0.378 - j0.378					
- 0.111- j0.117	- 0.284 - j0.398	0.124 + j0.217	0.55	0.116 - j0.213	0.07 + j0.215	- 0.378 + j0.378					
- 0.139	-0.2	0.434	-0.389	0.603	-0.494	-0.112					
- 0.126	0.004	-0.317	0.663	-0.495	0.015	0.463					