Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent Institution of MAHE, Manipal)

VI SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE-UP EXAMINATIONS, JUNE 2019

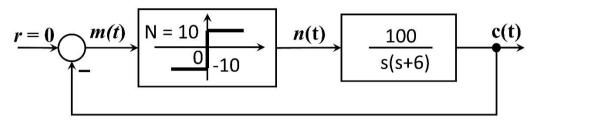
SUBJECT: CONTROL SYSTEMS DESIGN [ELE 4013]

REVISED CREDIT SYSTEM

	KEVIS	ED CREDIT SYSTEM		
Time: 3 Hours		e: 14 June 2019	Max. Mark	ks: 50
Instruc	ctions to Candidates:			
	✤ Answer ALL the questions.			
	 Missing data may be suitably assumed 	ned.		
	✤ Use of MATLAB is permitted.			
	For the unity feedback system with	- ()()		
	overshoot, design a PD controller to root locus method.) obtain 4 times redu	iction in settling time, using	(06)
1B.	Explain Zeigler Nichols tuning meth	od for the design of st	able controllers.	(04)
2A.	For the unity feedback system with	$G(s) = \frac{K}{s(s+1)(0.5s+1)}$,	design a lag compensator to	
	satisfy the following specifications. S 40º	tatic velocity error co	nstant 5 sec ⁻¹ , phase margin	(05)
	Explain state Controllability and Kalman's test.	state observability.	Discuss Gilberts test and	(05)
	Design a linear state feedback contro time less than 4 sec for the given sy	v 1	0	
	[-5 1 0] [0]			

$$\dot{x} = \begin{bmatrix} -5 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \quad y = \begin{bmatrix} -5 & 5 & 0 \end{bmatrix} x; \text{ consider the third pole at s=-6.}$$

Also design an observer which is 10 times faster than the control loop.


Evaluate the steady state error for step input.

Draw the state diagram of system with controller and observer.

Design a state feedback controller and integrator, plot step response of system with state feedback controller alone and the controller with integrator.

Clearly derive the state equations to be used for obtaining the plot, using a neat block diagram. (10)

- **4A.** Explain i)limit cycle ii) Jump phenomenon of nonlinear systems
- **4B.** For the linear time invariant system represented by the state equation $\dot{x} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} x$, assess the stability of the equilibrium point using Lyapunov stability criterion and also derive the corresponding Lyapunov function. State Lyapunov stability theorem for instability. (04)
- **4C.** Explain adaptive control scheme using MIT rule and Lyapunov rule. *(02)*
- **5A.** For the system given in Fig.Q5A, predict the possibility of a limit cycle.

Fig.Q5A

- **5B.** Derive an optimal feedback control law that minimizes the performance measure using reduced matrix Riccati equation
 - $J = \int_0^\infty (x_1^2 + x_2^2 + u^2) dt$, for the system described by $\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \quad x(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}^T x$

Verify using MATLAB, plot the system response with controller. Find J_{min} . (06)

(04)