Reg. No.					
9					

VI SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) **MAKE-UP EXAMINATIONS, JUNE 2019**

SUBJECT: DATA STRUCTURES AND ALGORITHMS [ELE 4018]

	REVISED CREDIT SYSTEM						
Time	: 3 Hours Date: 14, June 2019 Max. Marks: 50	Max. Marks: 50					
Instru	 Answer ALL the questions. Missing data may be suitably assumed. Write algorithms in pseudo-code only. 						
1A.	Explain asymptotic analysis of algorithms. (03))					
1B.	Solve the following recurrences:						
	a) $T(n) = 0.5 T(n/2) + 1/n$						
	b) $T(n) = 3 T(n/2) + n$						
	c) $T(n) = 16 T(n/4) + n$ (03))					
1C.	Write iterative and recursive algorithm to find nth power of a given number. Trace the algorithm to find cube of 2.						
2A.	Define "Abstract Data Structure". Give examples. (03))					
2B.	What is "Tower of Hanoi" puzzle? Obtain its time complexity. (03))					
2C.	Write a pseudo-code algorithm to obtain "Huffman code" for given characters and their frequency. (04))					
3A.	Write pseudo-code algorithms to insert and delete items from a STACK data-structure. Assume array implementation.						
3B.	Explain the concept of "Binary Search Tree" with a suitable example. (03))					
3C.	Write a pseudo-code algorithm to search for an item contained in singly linked-list. Find the time complexity of the algorithm.						
4A.	Define the following terms as applicable to GRAPHS						
	a) Edge b) Degree C) Path (03))					
4B.	Write a recursive algorithm to search a graph depth-first wise. Illustrate with a suitable example. (04))					

ELE 4018 Page 1 of 2

- **4C.** With a suitable example explain "Merge Sort" Algorithm. What is the time complexity of the algorithm? (03)
- **5A.** Using the algorithm to obtain a Fibonacci series, compare time complexities of Divide & Conquer and Dynamic programming techniques. (03)
- **5B.** Explain the concept of graph coloring with suitable example. (03)
- **5C.** What is a "Minimum Spanning Tree"? Illustrate with a suitable example. **(04)**

ELE 4018 Page 2 of 2