Reg. No.					
•					

VI SEMESTER B. TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, APRIL / MAY 2019

SUBJECT: DATA STRUCTURES AND ALGORITHMS [ELE 4018]

REVISED CREDIT SYSTEM

		REV	/ISED	CRE	DIT S	YSTE	M			
Time	e: 3 Hours	D	ate:	30, <i>A</i>	April 2	2019			Max. Mar	ks: 50
Instr	uctions to Candidates:									
	Answer ALL the ofMissing data may		nme	1						
	Write algorithms									
	J									
1A.	What is an algorithmic problem? How an algorithm is analyzed?								(02)	
1B.	Solve the following r	ecurrences:								
	1. $T(n) = 3T(n-1)$	l), if n>0 othe	rwise	e 1						
	2. $T(n) = 2T(n-1)$	l)-1, if n>0 otl	nerw	ise 1						(02)
1C.	How are data structures classified? Give examples.									(02)
1D.	Write iterative and	recursive alg	orith	ms to	con	vert a	a giv	en de	ecimal number to its	
	equivalent binary nu	ımber. Trace	the al	lgorit	hm fo	or a N	I=10.			(04)
2A.	Write functions to i	nsert and del	ete i	tems	from	ı a Qı	ueue	? Mo	dify the functions to	
	implement a circula	queue.								(03)
2B.	Using the details profile "DEAF".	covided in Ta	ble 1	1, ob	tain t	the H	uffm	an c	ode for "DEAD" and	
		Tab	le 1:	Huffr	nan c	oding	1			
		Character	Α	В	С	D	Е	F		
		Frequency	5	9	12	13	16	45		(03)
	TT : .1		. 1				<u> </u>	<u> </u>	. 1	` ,
2C.	The given infix string				_	ı infix	k stri	ng is	converted to postfix.	
	A+ (B*C-(D/E^F)*G	_	on p	ar po.	JC 151					(02)
2D.			ovali	uata :	a givo	n noc	rtfiv o	etrino	g array? Assume only	(02)
Δ D .	+ and – operators.	aigoritiiii to	Cvan	uate	a give	ii pos	ouia s) LI 1118	garray: Assume omy	(02)
	1									
3A.	Construct a binary s	earch tree for	the f	follov	ving d	lata:				
	A = [32, 16, 23, 9, 10, 3, 47, 39, 81, 35];									
	_		_		or tro	word	ale fo	or th	e binary search tree	
	constructed.	i i eui uei dili	a 108	stoi u	CI LIZ	10015	a15 1()I LII	e billary search nee	(03)
										` ,

ELE 4018 Page 1 of 2

3B.	Considering array implementation of a Binary search tree, write a recursive algorithm to search for item in it.	(03)
3C.	Compare linked lists and arrays for implementing data structures like STACKS and QUEUES.	(02)
3D.	Write a pseudocode algorithm to insert a new node at the end of a singly linked list.	(02)
4A.	With examples compare directed and undirected graphs.	(02)
4B.	How graphs are represented? What is the criteria for choosing a representation?	(02)
4C .	Write an algorithm to search a graph breadthwise. What is the time complexity of the algorithm?	(03)
4D.	What is the purpose of Hashing? What are the collision resolution policies?	
	Draw the 11 entry hashtable for hashing the keys 12, 44, 13, 88, 23, 94, 11, 39, 20 using the function (2i+5) mod 11, closed hashing, linear probing.	(03)
5A.	Write a divide-and-conquer algorithm to multiply two N-digit numbers with time complexity less than $O(n^2)$. Trace the algorithm for 12×34 .	(03)
5B.	Given the chain of 4 matrices – $A1=[4,3]$, $A2=[3,2]$, $A3=[2,2]$, $A4=[2,4]$.	
	Find the optimum sequence to multiply 1 x 4.	(02)
5C.	Write algorithm to implement Dijkstra's Shortest Path algorithm.	(02)
5D.	Explain P, NP, NP-Complete, NP-Hard type of problems.	(03)

ELE 4018 Page 2 of 2