Reg. No.

VI SEMESTER B.TECH. (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, APRIL / MAY 2019

SUBJECT: MEASUREMENTS & INSTRUMENTATION [ELE 3202]

REVISED CREDIT SYSTEM

Time: 3 Hours	Date: 27, April 2019	Max. Marks: 50
Instructions to Candidate	s:	
Answer ALL the	questions. Missing data may be suitably assumed.	

- Standard passive component values may be taken from the table.
- Standard passive component values may be taken from the table
- **1A.** Two different voltmeters are used to measure the voltage across R_2 in the circuit shown in **Fig.Q1A**. The specifications of the meters are as follows:
 - a. 5 V range, Sensitivity = $20 \text{ k}\Omega/\text{V}$
 - b. 10 V range, Sensitivity = 20 k Ω /V Supply voltage V_s = 40V; R_1 = 20 k Ω , R_2 = 1 k Ω and R_3 = 10 k Ω . Through appropriate analytical calculations, determine which of the above two voltmeters, introduces least error due to loading.
- **1B.** With suitable diagrams, derive the expressions for reflection and transmission coefficients in plane wave shielding theory. Hence, prove that, the shielding effectiveness of an infinite sheet of good conductor is dependent on the reflection loss as well as absorption loss.
- **1C.** You have been hired to an electrical machine manufacturing firm as a replacement to another engineer who left the company. The first task on arrival is to critically review and determine the current flowing in a designed circuit which is connected to a DC motor. The engineer's journal had the following observations:
 - a. DC current flowing through the circuit is measured by a PMMC based ammeter and backed up by an Electrodynamometer based ammeter.
 - b. The PMMC instrument contains 100 turns of coil with the flux density in the air gap being $0.2Wb/m^2$ with the coil area being $0.8 \ cm^2$.
 - c. The electrical characteristics of the employed electrodynamometer based ammeter was:

Deflection (degree)	30	50	90	120	150
Mutual Inductance (H)	0.015	0.025	0.045	0.06	0.075

- d. Spring constants for both the ammeters were determined to be the same.
- e. The deflection in both the meters when tested were found to be the same.

If the target design DC current to the DC motor is 3.5A, determine the % error (of current measurement) in the existing circuit design.

- **2A.** With a neat diagram and accompanying phasor diagram of Anderson's bridge, derive the expressions for the unknown inductance and resistance considering the bridge to be at balance.
- **2B.** A strain gauge is bonded to a steel beam 0.1m long and has a cross-sectional area of $4 cm^2$. Young's modulus of elasticity for steel is 207 GN/m². The strain gauge has an unstrained resistance of 240Ω and a gauge factor of 2.20. When the load is applied, the gauge's resistance changes by 0.013Ω . Calculate the change in length of the steel beam and the amount of force to be applied.

(03)

(04)

(03)

(03)

(03)

- **2C.** With a neat diagram, explain the working of a capacitive transducer working on the principle of differential arrangement. Further, prove that the differential output voltage varies in proportion to the measured displacement.
- **3A.** With a neat diagram, explain the principle of operation of a linear variable differential transformer (LVDT). Design a suitable signal conditioning circuit that ensures the LVDT output of 5 10 mV is shifted to an accepted level of 0 5V of an A/D converter. Assume a DC power supply of 5V to be available.
- **3B.** For the active filter circuit shown in **Fig. Q3B**, derive its mathematical model and comment on the nature of the filter. Also, taking into account, the given values of the passive components, determine its cutoff frequency/ies and quality factor.
- **3C.** A piezo shock sensor is connected to the back wheel of an F1 race car and it records a maximum possible shock of 100g during the trial test. The electrical signals from the shock sensor is fed to a charge amplifier configured in the voltage mode. The critical sensor parameters are defined as: crystal capacitance = 60pF and crystal resistance = $1G\Omega$. The shock to charge relation is determined to be as 0.6283pC/g. The connecting cable capacitance is 2.83pF. Design a suitable signal conditioning platform such that for zero to maximum shock input, the output should be limited to 0 5V for a fixed pass band of 5 159Hz. Assume the feedback capacitance to be $1\mu F$
- **4A.** With a neat diagram, explain the working of a flash analog to digital converter. Further, for a supply excitation of +12 V, determine the digital output of a 4 bit flash A/D converter for an input voltage of 2.5 V
- **4B.** With a neat diagram, explain the various elements of a distributed control system (DCS). Also list out the advantages of using DCS for process control.
- **4C.** With neat diagram, explain the operation of analog signal isolation in the photo-conductive mode. An active optical signal isolation circuit (photo-conductive mode) has the following specifications:

 $V_{cc} = +5V$; servo gain = forward gain = 0.004 and forward current = 15mADesign suitably, the circuit components that will ensure an amplified (as well as isolated) voltage output of 0 - 4V for an existing voltage input of 0 - 2V

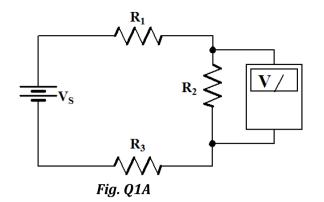
- **5A.** With a neat diagram, explain the working of an R-2R ladder digital-to-analog converter. For a reference voltage of 5V, create a table of analog voltage output of a 4 bit R-2R digital-analog converter. Given: $R = 100k\Omega$, $R_f = 400k\Omega$.
- **5B.** With the help of a neat block diagram, explain the working of various stages in an ECG measurement system resulting in an accurate representation of the health of a patient's heart **(03)**
- **5C.** Consider a 4 bit binary weighted D/A converter having the circuit components defined as $R = 10k\Omega$; $R_f = 5k\Omega$ and $V_{ref} = -10V$. For an input binary word of 1101, determine the following:
 - a. Resolution
 - b. Input current
 - c. Output current
 - d. Output voltage

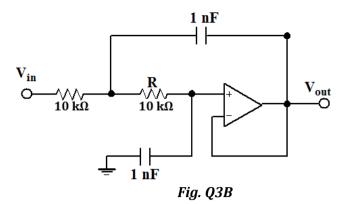
(04)

(03)

(03)

(04)


(04)


(03)

(03)

(03)

(04)

		Standard	Resistor V	Values (±5	%)	
1.0	10	100	1.0K	10K	100K	1.0M
1.1	11	110	1.1K	11K	110K	1.1M
1.2	12	120	1.2K	12K	120K	1.2M
1.3	13	130	1.3K	13K	130K	1.3M
1.5	15	150	1.5K	15K	150K	1.5M
1.6	16	160	1.6K	16K	160K	1.6M
1.8	18	180	1.8K	18K	180K	1.8M
2.0	20	200	2.0K	20K	200K	2.0M
2.2	22	220	2.2K	22K	220K	2.2M
2.4	24	240	2.4K	24K	240K	2.4M
2.7	27	270	2.7K	27K	270K	2.7M
3.0	30	300	3.0K	30K	300K	3.0M
3.3	33	330	3.3K	33K	330K	3.3M
3.6	36	360	3.6K	36K	360K	3.6M
3.9	39	390	3.9K	39K	390K	3.9M
4.3	43	430	4.3K	43K	430K	4.3M
4.7	47	470	4.7K	47K	470K	4.7M
5.1	51	510	5.1K	51K	510K	5.1M
5.6	56	560	5.6K	56K	560K	5.6M
6.2	62	620	6.2K	62K	620K	6.2M
6.8	68	680	6.8K	68K	680K	6.8M
7.5	75	750	7.5K	75K	750K	7.5M
8.2	82	820	8.2K	82K	820K	8.2M
9.1	91	910	9.1K	91K	910K	9.1M

Standard Capacitor Values (±10%)						
10pF	100pF	1000pF	.010µF	.10µF	1.0µF	10µF
12pF	120pF	1200pF	.012µF	.12µF	1.2µF	
15pF	150pF	1500pF	.015µF	.15µF	1.5µF	
18pF	180pF	1800pF	.018µF	.18µF	1.8µF	
22pF	220pF	2200pF	.022µF	.22µF	2.2µF	22µF
27pF	270pF	2700pF	.027µF	.27µF	2.7µF	
33pF	330pF	3300pF	.033µF	.33µF	3.3µF	33µF
39pF	390pF	3900pF	.039µF	.39µF	3.9µF	
47pF	470pF	4700pF	.047µF	.47µF	4.7µF	47uF
56pF	560pF	5600pF	.056µF	.56µF	5.6µF	
68pF	680pF	6800pF	.068µF	.68µF	6.8µF	
82pF	820pF	8200pF	.082µF	.82µF	8.2µF	