Reg. No.						
----------	--	--	--	--	--	--

VI SEMESTER B.TECH. (INFORMATION TECHNOLOGY) MAKEUP EXAMINATIONS, JUNE 2019

DATA WAREHOUSING AND DATA MINING [ICT 3202] REVISED CREDIT SYSTEM (12/06/2019)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data, if any, may be suitable assumed.
- 1A. With a suitable example, explain the star schema for multidimensional database.
- 1B. Explain the difference between MOLAP and ROLAP.
- 1C. Give the difference between OLTP and data warehouse systems.
- 3 2

5

5

3

2

5

2A. A media streaming website knows that 70% of its customers primarily watch on their television, 18% primarily watch on their computer, and 12% primarily watch on a mobile device. The company wonders if these percentages hold true after a recent update to the product. They take a random sample of 700 customers and obtain the results as given in Table Q.2A.

Table Q.2A

Device	Television	Computer	Mobile	
Expected	70%	18%	12%	
# of customers	401	197	102	

They want to perform a χ^2 goodness-of-fit test to determine if these results suggest that the distribution has changed. What is the expected count of customers that watch on their computer in the sample?

- **2B.** What is data preprocessing? Explain the techniques for performing data smoothing.
- 2C. Explain the methods for the generation of concept hierarchies for nominal data.
- 3A. Write the pseudo code for Pincer Search algorithm.

3B. Apply FP-Growth algorithm and find all the frequent itemset for the data given in Table Q.3B considering support threshold as 25%. Show all the steps.

Table Q.3B

TID	Items	
1	E, A, D, B	
2	D, A, C, E, B	
3	C, A, B, E	
4	B, A, D	
5	D	
6	D, B	
7	A, D, E	
8	B, C	

3C. Illustrate the advantages of using closed frequent itemset with an example.

3

- **4A.** Given initial seeds as X1 and X4, obtain clusters for the given dataset by applying k-means algorithm. Dataset = { X1(2,10); X2(2,5); X3(8,4); X4(9,4); X5(5,8); X6(1,2); X7(4,9) }
 - Also, check whether swapping the initial seeds to X2 and X5 would result in a better clustering.
- **4B.** Use Dynamic Itemset Counting to discover the frequent itemsets from the transactions below with M = 2, support threshold s=2 and confidence threshold c=60%. Show all the updates done in each database scan. The set of transactions are T1{P, Q, S, T}, T2{P, Q, R, S, T}, T3{P, Q, R, T}, T4{P, Q, S}
- 4C. The Probability of playing both cricket and football is 40%. The probability of playing football is 50%. There exists positive correlation between cricket and football. The Correlation measure, Lift between cricket and football is 2. Find the dependent/correlation measures all_confidence and cosine.
- **5A.** Find the root node using Information Gain as the attribute selection measure for the data given in Table Q.5A. What is the drawback of Information gain?

ID	Weather	Weekend_Job	Status	Class
1	Sunny	Yes	Rich	Cinema
2	Sunny	No	Rich	Tennis
3	Windy	Yes	Rich	Cinema
4	Rainy	Yes	Poor	Cinema
5	Rainy	No	Rich	Tennis
6	Rainy	Yes	Poor	Cinema
7	Windy	No	Poor	Cinema
8	Windy	No	Rich	Tennis
9	Windy	Yes	Rich	Cinema
10	Sunny	No	Rich	Tennis

- 5B. Write the DBSCAN algorithm. What are its advantages and disadvantages?
- **5C.** Discuss the problems faced by today's search tools in finding relevant information on the web.

5

5

3

2

× 750

2