MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

SIXTH SEMESTER B.TECH. (PME) DEGREE END SEMESTER EXAMINATION **JUNE 2019** SUBJECT: VIDEO PROCESSING (PMT - 3202)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer ALL questions.
- Missing data may be suitably assumed. •

Example:

ertical edge

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

?

?

?

- 1A. Explain Digital video system in terms of video capture, sampling, display and colour space.
- 1B. Estimate the pixel value in the question marked position by performing the spatial mean filters.

9

9

9

9

9

?

?

?

18

9

9

9

9

9

9

9

9

9

Filtered using a

3x3 mean filter:

1/9 1/9

1/9 1/9 1/9

1/9

10

1/9 1/9

1/9

9

9

9

9

9

9

?

?

?

			0	0	9	9	9			10				
1C.	Assuming continu	ious in	ntensity	value	s su	ppose	e that	an i	image	has t	he	intens	ity]	PDF
	$p(r) = \frac{2r}{(L-1)^2} \text{ for}$	r b	etween	0 to	L-1 :	and	$p(r)_{\pm}$	0 fo	r other	valu	es :	for r. 1	Find	the

transformation function that will produce an image whose intensity PDF is $p(z) = \frac{3z^2}{(L-1)^3}$

for all z and p(z) = 0 for other values of z.

(4+3+3)

(4+3+3)

2A. Explain following piecewise linear transformation:

a. Contrast Stretching b. Gray–level slicing c. Image subtraction

- 2B. Find the connectivity between p and q as shown below with set $V = \{1, 2\}$. Write the minimum distance between p and q for all (4, 8 and m) connectivity.
 - 2 1^{q} 3 1 2 2 2 0 1 2 1 1 _p1 0 1 2
- 2C Explain Hough Transform.

- 3A. With a neat diagram explain JPEG-base line codec system.
- 3B. Illustrate the concept of histogram specification for the following sub-image with 4X4 matrix of a 3 bit image and the specified histogram as shown below:

3C. Write an algorithm to perform three step search motion estimation for video processing.

(4+3+3)

4A. Determine the motion vector for the given sub image of 3X3 size within the reference frame of size 5X5.

Current block			Reference frame							
9	0	3		9	0	5	1	8		
2	6	7		2	6	8	6	0		
0	1	4		0	2	5	0	3		
			-	7	9	8	2	3		
				6	7	9	0	5		

4B. i. Differentiate between gray level slicing and bit plane slicing.

ii. Obtain the expression for the optimal global adaptive thresholding.

4C. Give the mask used for high boost filtering.

(4+3+3)

5A Write the coding and decoding algorithm for arithmetic coder and perform the arithmetic coding for the below given message GATES BILL

Symbol	space	Α	В	E	G	Ι	L	S	Т
Probability	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1

- 5B. With a neat diagram, explain fundamental steps in Digital Image Processing.
- 5C. Describe inter frame coding in the MPEG-1 architecture.

(4+3+3)