Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

III SEM B.Tech (BME) DEGREE END-SEMESTER EXAMINATIONS, NOVEMBER 2019.

SUBJECT: ANALOG ELECTRONICS (BME 2151) (REVISED CREDIT SYSTEM) Friday, 15th November, 2019, 8,30 AM to 11.30 AM

TIME: 3 HOURS

MAX. MARKS: 50

5

- **Instructions to Candidates:**
- 1. Answer ALL questions.
- 2. Draw labeled diagram wherever necessary
- 3. Assume suitable data, if missing
- 4. Refer to the table of standard resistors/capacitors (if required)
 - 1. (A) For the network shown in figure Q1(A), making use of graphical method, determine: 5
 - a. I_{DQ} and V_{GSQ}
 - b. V_D
 - c. V_S
 - d. V_{DS}
 - e. V_{DG}
 - (B) A crystal has the following parameters: L = 0.33H, C = 0.065pF , C[|] = 1.0pF and 3 R = 5.5 K\Omega
 - (i) Compute the series and parallel resonant frequencies of the crystal
 - (ii) What is the Q-factor of the above crystal?
 - (iii) By what percentage does the parallel resonant frequency exceed the series resonant frequency?
 - (C) Make a comparison of RC coupled Class-A and Class-B Push-Pull power amplifiers. 2
- 2. (A) For the circuit shown in figure Q2(A), prove that
 - (a) $Z_i = R_s ||(1/g_m)|$
 - (b) $A_v = g_m R_D$
 - (B) Determine R_D and R_S for the network shown in figure Q2(B), to establish a gain of 10 3 using a relatively high g_m at $V_{GSQ} = V_P/4$. Assume $y_{os} = 0$.
 - (C) Calculate g_{mo} and g_m of a JFET having $I_{DSS} = 10$ mA and $V_P = -5V$ when operated at a 2 d.c bias point of $V_{GSQ} = -2V$.
- 3. (A) Prove that for a Class-B power amplifier, the power output $P_{O(\max)} = \frac{V_{CC}I_{C(Sat)}}{4}$ and finite efficiency $\eta = 78.5\%$.
 - (B) For the JFET circuit shown in figure Q3(B), considering the dynamic drain resistance 3 calculate the voltage gain with:
 - (a) Resistor R_S bypassed by a capacitor
 - (b) Resistor R_S un-bypassed

- (C) The JFET circuit shown in figureQ3(C) has an operating point defined by $V_{GSQ} = -2$ V 2 and $I_{DQ} = 5.625$ mA, with $I_{DSS} = 10$ mA and $V_P = -8$ V. The applied signal is V_i and $y_{os} = 40 \ \mu$ S.
 - (i) Draw a labelled a.c equivalent circuit
 - (ii) Determine the output resistance "Zo"
- 4. (A) For the MOSFET circuit shown in figure Q4(A), having $I_{DQ} = 6.7$ mA and 5 $V_{GSQ} = 12.5$ V, and $g_{os} = 20\mu$ S. Compute trans-conductance, dynamic drain resistance, input impedance, output impedance, and the voltage gain.
 - (B) Prove that the circuit shown in figure Q4(B) is a unity gain amplifier.
 - (C) Determine the voltage gain and output impedance of the FET amplifier circuit shown 2 in figure Q4(C).
- 5. (A) In a common emitter transistor amplifier circuit, the bias is by a self-bias, and the 5 various parameters are: $V_{CC} = 16V$, $R_C = 3K\Omega$, $R_E = 2K\Omega$, $R_1 = 56K\Omega$, $R_2 = 20K\Omega$ and $\alpha = 0.985$ and the transistor is made of germanium. Determine (a) Operating point and (b) Stability factor.
 - (B) Calculate the ac output power of the amplifier circuit shown in figure Q5(B). 3 (Assume $V_{BE} = 0$).
 - (C) Design a current-series feedback amplifier to have an overall trans-conductance gain 2 of -1mA/V, a voltage gain of -4, and a de-sensitivity of 50. Make use of a NPN type BJT having $h_{fe} = 150$, and assume a signal source with a resistance of 1K Ω . Draw the labelled circuit diagram of the designed amplifier.

3

Fig. Q2(B)

Fig. Q3(B)

Fig. Q5(B)