Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

III SEMESTER B.Tech. (BME) DEGREE MAKE UP EXAMINATIONS NOV/DEC 2019-20

SUBJECT: NETWORK ANALYSIS (BME 2154) (REVISED CREDIT SYSTEM) Saturday, 28th December 2019: 8.30 AM to 11.30 AM.

TIME: 3 HOURS

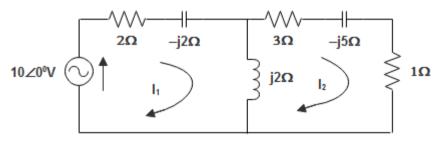
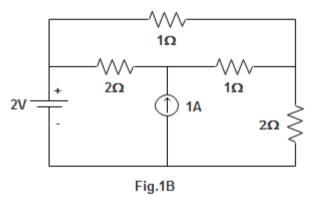
Instructions to Candidates:

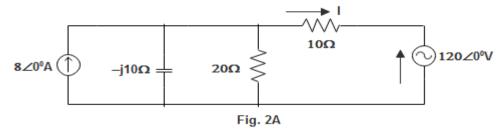
MAX. MARKS: 50

1. Answer ALL questions.

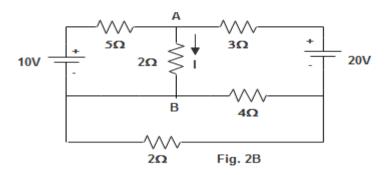
2. Draw labeled diagram wherever necessary. Any missing data may suitably be assumed.

1A. For the circuit shown in Fig.1A, find the currents I₁ and I₂. Also calculate the power (4) dissipation in all the resistors.

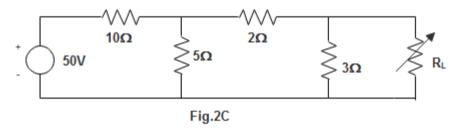



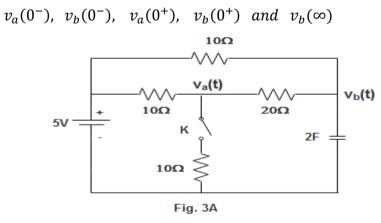

Fig.1A

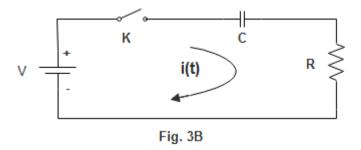
1B. For the circuit shown in Fig.1B, using node voltage analysis, find the currents in all (3) resistors.



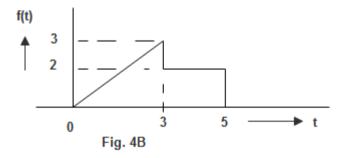
1C. For a series RLC resonant circuit, $R=5\Omega$, L=4mH, $C=0.1\mu F$ and V=10 volts. Find the (3) frequency of resonance, quality factor, voltage drop across L, C and R at resonance, maximum current of the circuit and half power band width.


2A. For the circuit shown in Fig.2A, determine the current I in 10Ω resistor using (4) superposition theorem.


2B. For the network shown in Fig.2B, determine the current I in 2Ω resistor connected (3) across the terminals AB using Thevenin's theorem.


2C. In the network shown in Fig 2C, find the value of load resistance \mathbf{R}_{L} when it receives (3) maximum power. What is the maximum power?

3A. For the circuit shown in Fig.3A, a steady state is reached with K is open for t<0. At t=0 (4) the switch K is closed. Find,


3B. In the network shown in Fig.3B, the switch K is closed at t=0. Using Laplace transform (3) solve for the current i(t) and sketch the waveform.

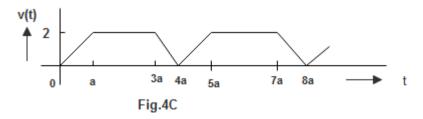
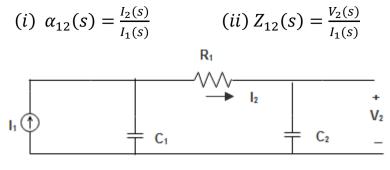

- 3C. Determine the inverse Laplace transform of the following. (3) (i) $F(s) = \frac{1}{(s+1)(s+2)^2}$ (ii) $F(s) = \frac{5s^2+4s+1}{(s+3)(s+1)^2}$

Fig. 4A


4B. For the waveform shown in Fig.4B, determine its Laplace transform. (3)

4C. For the periodic waveform v(t) shown in Fig.4C, determine its Laplace transform. (3)

5A. For the network shown in Fig. 5A, find the expressions of,

-		-	
Ηi	C	•	Δ
	ы	-	

5B. A step voltage is applied to a low pass RC circuit whose time constant is RC. Show that (3) for the output waveform the rise time t_r is given by,

 $t_r = 2.2 \times RC$

5C. A square wave whose peak to peak amplitude is 1 Volt extends ±0.5 Volts w.r.t. ground. (3) The duration of the positive section is 0.1 seconds and of the negative section is 0.2 seconds. If this waveform is impressed upon a high pass RC circuit whose time constant is 0.2 seconds. Calculate and sketch the output waveform and label all voltage levels.