Reg. No.	
----------	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL (A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2019

ELECTRICAL MACHINES-I [ELE 2154]

REVISED CREDIT SYSTEM

Time:	3 Hours	Date: 23, November 2019	Max. Marks: 50		
Instructions to Candidates:					
	✤ Answer ALL the questions.				
	 Missing data may be suitab 	oly assumed.			
1A.	In a 5 kVA 200/400V, 50Hz	z single phase transformer, the maximum value	of core flux		
	is 0.025 Wb. Calculate:				
	(i) Induced EMF/turn (ii)	number of turns in primary and secondary windi	ngs. (02)		
1B.	A 100 kVA, 11000 / 240 V, 5	50 Hz, single phase transformer has the followi	ng test data :		
	Open Circuit Test : 240	V, 20.7A, 950 W with HV open circuited			
	Short Circuit Test : 128	.3 V, 9.09A, 1050 W with LV short circuited			
	Draw approximate equivale	ent circuit of the transformer referred to HV sid	e. (03)		
1C.	The efficiency of 6600/400	V, 200 kVA transformer at unity power factor i	s 98 % both		
	at full load and half-full load	d. Calculate:			
	(i) Iron loss and ful	ll load copper loss			
	(ii) kVA load corres	ponding to maximum efficiency and			
	(iii) Value of maxim	um efficiency for a load power factor of 0.8 laggin	ıg. (05)		
2A.	With neat sketches, show t	hat open-delta connection has a kVA rating of	58 % of the		
	rating of the normal delta-d	lelta connection.	(02)		
2B.	Two transformers A and B a	re connected in parallel to a load of (8+i6) Ω . Th	e equivalent		
	impedances of the two tran	sformers are $Z_A = (0.3+i3) \Omega$ and $Z_B = (0.2+i1) \Omega$	l in terms of		
	their secondary. Their no	-load terminal voltages are E _A =6600 V and	E _B =6500 V.		
	Determine:				
	(i) Common terminal v	oltage			
	(ii) Current delivered by	v each transformer along with their power facto	ors. (05)		
2C.	With a neat sketch explain t	he working of an OFF load tap changing transfo	ormer. What		
_ 0.	are its disadvantages?		(03)		
	are no alouavantageor		(00)		
3A.	Derive an expression for gr	oss torque developed in a 3 phase induction mo	otor running		
	at a slip 's' in terms of r	machine parameters. Sketch and explain the	torque-slip		
	characteristic of a 3-phase	slip-ring induction motor (i) with slip rings sh	ort circuited		
	(ii) slip rings are connected	to an external star connected rheostat.	(04)		

- **3B.** A cage induction motor when started by means of a star-delta starter takes a line current 180% of full load line current and develops 35% of full load torque at starting. Calculate:
 - (i) full load slip
 - (ii) starting torque and supply line current in terms of full load values, if an autotransformer with 75% tapping were employed
- **3C.** A 4 pole, 50 Hz, 3-phase slip ring induction motor has rotor resistance of 0.4Ω per phase and inductive reactance of 4 Ω per phase at standstill conditions. Calculate:
 - (i) speed at maximum torque
 - (ii) ratio of maximum torque to starting torque
 - (iii) value of external resistance per phase required in rotor circuit to get 50% of maximum torque at starting(03)
- **4A.** A 440 V, 50 Hz, 6-pole, 3 phase induction motor has a rotor input power of 80 kW. The rotor emf is observed to make 100 complete cycles per minute. Calculate:
 - (i) speed at which rotor is running
 - (ii) rotor copper loss per phase
 - (iii) gross mechanical power developed
 - (iv) rotor resistance per phase if the rotor current is 65 A per phase (03)
- 4B. With a suitable connection diagram, explain the procedure of no-load and blocked rotor test on 3-phase induction motor. How are the parameters of equivalent circuit determined from the test results? (04)
- 4C. Explain double-revolving-field theory for single phase induction motors. Draw and explain the forward and backward torques developed and torque-slip curve of a single phase induction motor based on the above theory and hence show that single phase induction motor is not self-starting. (03)
- 5A. Explain with relevant characteristic, the voltage build-up in a DC shunt generator when driven at rated speed. (04)
- **5B.** Draw and explain the external characteristic of DC (i) shunt (ii) Long shunt differential generator. *(03)*
- **5C.** A long shunt DC compound generator has armature, series field and shunt field resistances of 0.05 Ω , 0.03 Ω and 250 Ω respectively. It delivers a load of 25 kW at a terminal voltage of 500 V. The armature consists of 400 lap wound conductors. The net field flux per pole is 30 mWb. Allowing 1 V per brush for contact drop, calculate:

(i) Generated emf (ii) Speed at which the generator is running.

(03)

(03)