

(A constituent unit of MAHE, Manipal)

III SEMESTER B. TECH (IP ENGG.) END SEMESTER EXAMINATIONS, DECEMBER 2019

SUBJECT: THERMAL ENGINEERING [MME 2160]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.
- Use of Thermodynamics data hand book is permitted

1A.	Air at 1.02 bar, 25 °C initially occupying a cylinder volume of 0.020 m ³ is compressed
	reversibly and adiabatically by a piston to a pressure of 7 bar. Calculate

- i) The final temperature
- ii) The final volume
-

	III) The work done	5
1B.	 What are the effects of following parameters on Rankine cycle work and efficiency? i) Boiler pressure ii) Condenser pressure iii) Super heating 	3
1 C .	State Kelvin Planck's and Clausius's statements on second law of thermodynamics.	2
2A.	State and prove the Carnot theorem with a neat sketch.	5
2B.	A reversible heat engine operates between a source temperature of 500 $^{\rm o}$ C and a sink temperature of 20 $^{\rm o}$ C. Find the heat rejected per net-work output of the engine.	3
2C.	Write the steady flow energy equation for a turbine.	2
3A.	Briefly explain air standard Otto cycle with the help of a p-V diagram and derive an expression for thermal efficiency.	5
3B.	The minimum pressure and temperature in a Diesel cycle are 100 kPa and 27 ⁰ C. The amount of heat added per cycle is 1500 kJ/kg. Determine the pressure and temperature at all salient points. Assume compression ratio as 15.	3
3C.	What are the assumptions made in air standard cycles?	2
4A.	What are the different stages of combustion in spark Ignition engines? Explain with a neat sketch.	4

4B.	Derive an expression for work done in reciprocating compressors with and without clearance using suitable sketch.	4
4C.	What is multistaging in a reciprocating compressor? Explain with a p-V diagram.	2
5A.	A composite wall is made of 3 layers, middle layer being packed grass of 10 cm thick (k=0.02 W/m $^{\circ}$ C) and the sides are made of plywood each of 2 cm thickness (k=0.12 W/m $^{\circ}$ C). Determine the heat flow if one surface is at 35 $^{\circ}$ C and other at 20 $^{\circ}$ C with the help of a neat sketch.	3
5B.	Define emissivity and state Stefan-Boltzmann law.	2
5C.	With T-s diagram explain ideal Rankine and Rankine reheat cycles.	5