

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

V SEMESTER B.Tech (BME) DEGREE MAKE UP EXAMINATIONS, DEC/JAN 2019-20

SUBJECT: DIGITAL SIGNAL PROCESSING (BME 3104) (REVISED CREDIT SYSTEM)

Monday, 30th December 2019: 2 PM to 5 PM

TIME: 3 HOURS

MAX. MARKS: 50

(3)

Instructions to Candidates: 1. Answer ALL questions. 2. Draw labeled diagram wherever necessary 1. a) Is the causal discrete time sequence $x(n) = 1 + \frac{1}{n}$ is an absolutely summable sequence? (2) Justify? b) Consider the discrete time sequence $x(n) = \begin{cases} |n| & -3 \le n \le 3 \\ 0 & otherwise \end{cases}$, determine even and (2) odd part of x(n).

c) Consider the discrete time sequence,

$$x(n) = \begin{cases} 1 & -1 \le n \le 2\\ 0.5 & 3 \le n \le 4\\ 0 & otherwise \end{cases}$$

Express the signal x(n) in terms of unit step sequence.

d) Consider two cascaded LTI systems having impulse responses as: $h_1(n) = \left(\frac{1}{2}\right)^n \delta(n - n_1) \text{ and } h_2(n) = \left(\frac{1}{4}\right)^n \delta(n - n_2). \quad n_1, n_2 \in \mathbb{Z}$ (3)

respectively. Determine the overall impulse response.

- 2. a) Determine the zero-state response of the system described by the first-order difference (2) equation $y(n) + \frac{1}{2}y(n-1) = x(n)$, to the input $x(n) = \{1,2,1\}$.
 - b) Show that the necessary and sufficient condition for a relaxed LTI system with an (3) impulse response h(n) to be causal is h(n) = 0, n < 0

c) Let x(n) be a discrete time sequence with the magnitude spectrum defined in the (2) interval $-\pi \le \omega < \pi$ as shown in Fig 1.

Determine and sketch the magnitude spectrum of the signal $y(n) = x(n) \cos\left(\frac{\pi n}{2}\right)$ in the interval $-\pi \le \omega < \pi$.

- d) Consider the discrete time sequence,
 x(n) = αⁿ sin(ω₀n) u(n),
 Give the conditions for Fourier Transform existence and determine the Discrete Time Fourier Transform of the sequence.
- 3. a) Let $x(n) = \{4,3,2,1,0,-1,-2,-3\}$ be an 8-point sequence. Compute and plot (2) $x(\langle -n \rangle_8) - x(\langle n-3 \rangle_8)$
 - b) Consider the 8-point sequence, $x(n) = \{4, -3, 2, -1, 0, -1, 2, -3\}$ Determine the Discrete Fourier Transform using Radix-2 Decimation-in-time Fast Fourier Transform algorithm.
 - c) Determine the z-transforms of the sequence $x(n) = \alpha^n u(-n)$ and sketch the (2) corresponding pole-zero pattern with its ROC and state whether or not Discrete Time Fourier Transform exist.
 - d) Evaluate the inverse z-transform for all possible ROCs and also mention the ROC for (3) which inverse z-transform doesn't exist for the given z-transforms:

$$X(z) = \frac{3z^2 + 0.1z + 0.87}{z^2 + 0.3z - 0.18}$$

(3)

(3)

- 4. a) A length-12 Type-2 linear-phase FIR filter has the following zeros: $z_1 = 3.1$, $z_2 = (4)$ -2 + j4, $z_3 = 0.8 + j0.4$.
 - i). Determine the locations of the remaining zeros.
 - ii). Design the filter.
 - b) The Transfer function of a IIR Band Stop Filter is defined as: (6)

$$H(z) = \frac{1+\alpha}{2} \frac{1-2\beta z^{-1}+z^{-2}}{1-\beta(1+\alpha)z^{-1}+\alpha z^{-2}}$$

Design this IIR Band Stop Filter with notch frequency $\omega_0 = \frac{\pi}{2}$ radians and the Bandwidth $BW = \frac{\pi}{6}$ radians. Plot the Frequency response using Magnitude and phase spectrum.

5. The IIR digital Low Pass filter specifications are as shown in the Fig. 2

Fig. 2

Determine the following:

- a) Design the Analog Chebyshev Low Pass Filter. (6)
- b) Design the Digital IIR Low Pass Filter from 5(a) using Bilinear Transformation method. (4)