Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, DECEMBER 2019

DIGITAL SIGNAL PROCESSING [ELE 3102]

REVISED CREDIT SYSTEM

Time:	3 Hours Date: 21 December 2019	Max. M	Marks: 50	
Instructions to Candidates:				
	✤ Answer ALL the questions.			
	 Missing data may be suitably assumed. 			
1A.	An analog signal is given by, $x(t) = 2\sin(250\pi t) + 3\cos(400\pi t) - \sin(6005)$ $5\sin(750\pi t)$ If it is sampled at a rate of 500Hz, determine the general discrete-time signal. Illustrate aliasing if any.	$(\pi t) +$ ted	(04)	
1B.	Define circular convolution property of DFT. An LTI system has i response $h(n) = \sin(\frac{\pi n}{2})$ for $0 \le n \le 3$ and input $x(n) = 2^{n-1}u(n-1)$ fo ≤ 3 . Using circular convolution compute the response of the system.	mpuls r 0 ≤ i	e n (04)	
1C.	The first 5 points of 8-point DFT of a real valued sequence are {28, -4+j9.565, -4+j4, -4+j1.656, -4}. Determine the remaining State the property of DFT used to solve this problem.	points	(02)	
2A.	Illustrate the over-lap add method for filtering long data sequence for $[3, -1, 0, 1, 3, 2, 0, 1, 2, 1, -2, 3]$ and $h(n) = [1, -1, 1]$. Take let the data block as 3.	r x(n)= ngth c	= of (03)	
2B.	Signal $x(n) = 10 \sin(20\pi t) + 20\cos(40\pi t)$ is sampled at 80Hz and 64 same collected. 64 point DFT, X(k) is then computed. At what k values would you expect to see peaks in the DFT?	nples ,	(03)	
2C.	Compute the 8-point DFT of the sequence $x(n) = \{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, $	5, 0, 0 all th	e (04)	
3A.	Realize the lattice structure for the LTI system defined by the difference equation, $y(n) = x(n) + 2x(n-1) + 5x(n-2) - 4x(n-3)$	nce	(04)	
3B.	Obtain the parallel form and direct form-II structure realizations for system described by the system function,	the LT	I	
	$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{(z - \frac{1}{4})(z^2 - z + \frac{1}{4})}$		(04)	

3C. Explain Gibb's phenomenon in FIR design using windows. **(02)**

4A.	Briefly explain pole-zero placement method for low-pass, high-pass and notch IIR filter design	(03)
4B.	Explain the properties of Chebyshev type-I filter. Discus about pole location for low pass filter	(03)
4C.	Design a linear phase FIR band stop filter having cut-off frequencies 100Hz and 200Hz. Choose sampling frequency, $Fs=1KHz$. Use 9 length rectangular window.	(04)
5A.	Describe the digitization of analog filter using impulse invariance transformation technique	(03)
5B.	Design a digital low pass Butterworth filter using Bilinear transformation method to meet the given specifications. Pass-band ripple must be less than or equal to 1.25dB at pass-band edge frequency of 200Hz. Stop-band attenuation must be greater than or equal to 15dB at stop-band edge frequency of 400Hz. Sampling frequency is 2KHz.	(05)
		(

5C. With a neat block diagram, explain the digital signal process. **(02)**