Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2019

DIGITAL SIGNAL PROCESSING [ELE 3102]

REVISED CREDIT SYSTEM

Time:	3 Hou	irs		18	8 th Noven	nber 2	2019				Ma	x. Ma	rks: 50
Instructions to Candidates:													
	✤ Answer ALL the questions.												
	 Missing data may be suitably assumed. 												
	 DSP Quick reference table may be provided. 												
1A.	Consider an analog signal $x(t) = 20\cos\left(40\pi t - \frac{\pi}{3}\right) - 10\cos\left(100\pi t\right)$ applied to a sampling and reconstruction system. i. What value of the minimum sampling rate F _s will ensure y(t)=x(t)?												
	iii. Determine the discrete-time signal $X(n)$ for rs=300 m2.												
		y(t) = D	$+ 20\cos($	$40\pi t - \frac{1}{2}$	$\left(\frac{\pi}{3}\right)$? wher	re D is	so tha	ai nstar	nt.				(03)
1B.	Show that M length FIR filter with impulse response satisfying the condition $h(M-n-1) = h(n)$ has linear phase response. (Assume odd length for derivation).											the odd	(03)
1C.	Illust x(n)=	rate the =[1 2 ▲	over-lap 3 2	save 1 -1	method f 2 4	or filt 5] a	ering and h(long (n)=[data 1 ↑	sequ -1	ence 1] us	e for sing	
	input	sub fran	nes of le	ngth 5.									(04)
2A.	Explain the need for antialiasing filter in digital signal processing system.											æm.	(02)
2B.	Determine the 8 point DFT of the sequence $x(n)$ using radix 2 decimation in frequency FFT algorithm where $x(n) = \begin{cases} 1; & -3 \le n \le 1 \\ 0; & otherwise \end{cases}$												
	Show all the intermediate values in the signal flow graph.										(05)		
2C.	Compare the characteristics of Butterworth, Chebyshev Type-I with N even and N odd, where N is the order of the filter. Also plot magnitude response in each case.												(03)
3A.	For tł -2≤n	ne given ≤3.	6 point s	sequen	ce x(n) =	= [1,	1,	4,	3,	2,	2]	for	
	i. Find the 3 point DFT Z(k) of the sequence $z(n)=x(2n)$ with $0 \le k \le 2$.								≪≤2.				
	ii.	Find 3 p	oint DF	「Y(k) (of a y(n)=	=z(n+	-1)		-				(05)

- **3B.** A linear phase FIR digital filter is described by difference equation $y(n) = \sum_{k=0}^{2} b_k x(n-k)$. Determine the filter coefficient such that it rejects a frequency component at $\omega_o = \frac{\pi}{3}$ and its frequency response is normalised so that $|H(e^{j\omega})|_{\omega=0} = 1$ (03)
- **3C.** Write a technical note on all pass filter. Also mention the location of poles and zeros in z plane.
- **4A.** Determine the lattice-ladder parameters for the following digital filter. Sketch lattice-ladder structure.

$$H(z) = \frac{1 - 8z^{-1} + 0.15z^{-2}}{2 + 0.2z^{-1} - 1.44z^{-2}}$$

Comment on the stability of the system.

- **4B.** A causal linear phase symmetric FIR system H(z) which has 4 zeros is given by $H(z) = H_1(z)(1 0.8z^{-1} + 0.64z^{-2})$. Find impulse response h(n) of the FIR system. Take h(n) =1 for n=0. (02)
- **4C.** From fundamental design an FIR linear phase digital filter approximating the ideal frequency response

$$\left|H_{d}(e^{j\omega})\right| = \begin{cases} 1; \ \frac{\pi}{4} \le |\omega| \le \frac{3\pi}{4} \\ 0; \ otherwise \end{cases}$$

Determine the coefficients of a seven tap filter using Blackman window. **(04)**

5A. Linear phase digital low pass filter with the following specifications is required.

Pass band 0 to 5 kHz

Sampling frequency 18 kHz

Filter length 9

Design this filter using frequency sampling method. (05)

5B. Design a digital Butterworth filter using Bilinear transformation to satisfy the following specification.

$$\begin{cases} 0.8 \le \left| H(e^{j\omega}) \right| \le 1; & for \quad 0 \le \omega \le 0.4\pi \\ \left| H(e^{j\omega}) \right| \le 0.2; & for \quad 0.6\pi \le \omega \le \pi \end{cases}$$

Take sampling frequency of 1 Hz.

Page 2 of 2

(05)

(04)

(02)