Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent Institution of MAHE, Manipal)

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE-UP EXAMINATIONS, DECEMBER 2019

SUBJECT: LINEAR CONTROL THEORY [ELE 3101]

REVISED CREDIT SYSTEM

Time: 3 Hours	Date: 19 December 2019	Max. Marks: 50
Instructions to Candidates:		
Answer ALL the questions	5.	

- Missing data may be suitably assumed.
- Semi log graph sheet will be provided
- For the rotational mechanical system shown in Figure Q1A, determine the transfer function 1A. (03) $G(s) = \theta_2(s)/T(s)$
- The block diagram of a system is shown in **Figure. 01B**. Using suitable block reduction **1B**. techniques, obtain the final transfer function of the system. (03)
- **1C.** Sketch the root locus for a unity feedback system with open loop transfer function given below and comment on the range of 'K' for system to be stable.

$$G(s) = \frac{K(s+1)}{s(s+4) + 13}$$
 (04)

- 2A. For the second order underdamped system G(s) given below, derive suitably the expressions for the following parameters:
 - peak time
 - maximum peak over shoot

Consider the system to be subjected to a unit step excitation.

$$G(s) = \frac{\omega_n^2}{s^2 + 2\xi w_n s + \omega_n^2} \tag{03}$$

- 2B. For the asymptotic bode magnitude plot shown in Figure. Q 2B, determine the gain margin (03) (dB) of the system through analytical method.
- Determine the phase margin and gain margin of the system with open loop transfer function 2C. given below (Use the semi-log graph sheet to draw the bode plot):

$$G(s) = \frac{20(s+1)}{s(s+5)(s^2+2s+10)}$$

Also comment on the stability of the system.

(04)

3A. A unity feedback system has the open loop transfer function as given below:

$$G(s) = \frac{100K}{(s+1)(s+10)(s+3)}$$

Draw the Nyquist diagram and determine the range of K for which the system remains stable. (03)

- **3B.** For the characteristic equation of a feedback control system $s^4 + 25s^3 + 15s^2 + 20s + k = 0$, determine the range of K for stability. Determine the value of K so the system is marginally stable and the frequency of sustained oscillations. (03)
- **3C.** A unity feedback system has an open loop transfer function given by the following expression is operating with a dominant pole damping ratio of 0.707

$$G_p(s) = \frac{K(s+6)}{(S+2)(S+3)(S+5)}$$

Design a suitable PD controller so as to reduce the settling time by a factor of 2. Also compare the transient and steady state performance of the compensated and uncompensated systems. (04)

4A. Through analytical technique, justify whether the transfer function given below can act as a lag, lead or lag-lead compensator.

$$G_c(s) = \frac{s+1}{s+0.1}$$
(03)

- **4B.** With a neat diagram, realize a lead compensator using an operational amplifier. Also justify its phase lead nature from resultant phase equation. **(03)**
- **4C.** The open loop transfer function of a unity feedback system is given as:

$$G(s) = \frac{K}{s(s+2)}$$

Design a lead compensator to have a static error constant of 20 s⁻¹ and prove analytically that a phase margin of at least 50° is obtained (04)

5A. Consider a unity feedback system with the plant transfer function given as:

$$G(s) = \frac{K}{s(s+7)}$$

Using root locus approach, design a suitable controller to make steady state error as zero when the system is operating with a closed loop system response that has 15% overshoot.

- **5B.** Determine the state-space representation of the electrical network shown in **Figure Q5B** considering the capacitor voltage $V_0(t)$ to be the output parameter. (03)
- **5C.** For the system shown below, design a state feedback controller such that the compensated system has an overshoot of 10% and settling time of 3secs. Further design an observer which is ten times faster than the designed controller.

$$x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$
(04)

(03)



