Reg. No.

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2019

SUBJECT: POWER SYSTEM ANALYSIS [ELE 3105]

Date: 25 November 2019	Time : 3 Hours	Max. Marks: 15
Instructions to Candidates:		
✤ Answer ALL the questions.		

1A. The single line diagram of a two-machine system is as shown in Fig.1A. Draw the impedance diagram of the system choosing a base of 11.5 kV, 60 MVA in the motor circuit. The transformer T_2 comprises of 3 single phase units each rated 15 MVA, 11/127 kV and 10% reactance.

1B. The three-phase ratings of a three winding transformer are:

Primary:Y connected 15MVA, 66kVSecondary:Y connected 10MVA, 13.2kVTertiary:Δ connected 5MVA, 2.3kV

Neglecting resistance, the leakage reactances are, $x_{PS}=7\%$ and $x_{PT}=9\%$ (both measured on primary); $x_{ST}=8\%$ (measured on secondary). Calculate the per unit reactance of the per phase equivalent circuit for a base of 6 MVA, 86 kV in the primary circuit.

- 1C. Define the following: (i) Momentary current and (ii) Interrupting current as applied to the rating of a Circuit Breaker. Mention the suitable multiplication factors to determine the above currents in terms of respective symmetrical currents.
- **2A.** For the system shown in fig.2A, Calculate the fault current fed by G_1 and G_2 for a three-phase solid fault on the 132kV bus. Choose a base of 45MVA, 13.2kV on generator circuit. Neglect pre-fault current.

(05)

(02)

(06)

Fig. 2A

- **2B.** Derive the expression for 3 phase complex power in terms of symmetrical *(02)*
- **2C.** Compute the unbalanced currents I_a , I_b and I_c , if the sequence components are $I_{a1}=10+j9$ A, $I_{a0}=0$ A and $I_{a2}=$ 4.5738-j0.6778 A. Assume abc sequence. (03)
- 3A. Derive an expression for the fault current when a short circuit fault occurs between lines `b' and `c' through a fault impedance Z_f. Also show the interconnection of sequence networks for this fault.
- **3B.** Draw the sequence networks and the corresponding Thevenin's impedances when an unsymmetrical fault occurs at bus 2 shown in fig. 3B. The ratings of the components are given below $G_1, G_2: 20 \text{ MVA}$, star grounded through reactance, 11 kV, $x_1=0.15 \text{ pu}$, $x_2=0.1 \text{ pu}, x_0=0.05 \text{ pu}, x_n=0.03 \text{ pu}$ $T_1, T_2, T_3, T_4: 20 \text{ MVA}, 11/110 \text{ kV}, x=0.1 \text{ pu}$ Lines 1 & 2: $x_1=x_2=0.1 \text{ pu}, x_0=0.35 \text{ pu}$ on a base of 20 MVA, 110 kV.

Fig. 3B

- **3C.** Two 6.6 kV, 3 phase 10 MVA alternators are connected to a common bus. Each alternator has $x_1=0.15$ p.u., $x_2=0.1$ pu, $x_0=0.05$ pu and $x_n=0.06$ pu. An unsymmetrical fault occurs on the bus. Calculate the fault current in kA, if the fault is i) bolted (or solid) L-G, ii) L-L through a fault reactance of 0.01 pu and iii) solid L-L-G fault
- **4A.** A generator is transferring 1 per unit power to a load through a short line. A 3-phase fault occurs at the generator terminals. Use equal area criterion and find critical clearing angle & the corresponding time. Derive the formulae used. Given $P_{max}=2$ pu (amplitude of power angle curve), H=6MJ/MVA, f=50 Hz.
- **4B.** A 200MVA, 11 kV, 50 Hz, 4 pole generator has H=6MJ/MVA. The machine is operating at a load of 120 MW when the load is suddenly increased to 160 MW. Find the rotor speed if the rotor deceleration is maintained for 5 cycles.

(03)

(05)

(03)

(04)

Page 2 of 3

- **4C.** Derive the expression for natural frequency of oscillation when an alternator is subjected to small changes in load.
- 5A. Eliminate node 3 by matrix algebra for the system shown in Fig.5A

Fig.5A

5B. Compute Jacobian elements for the system shown in Fig.5B at the end of one iteration using N-R method. Consider 100 MVA as the base.

Fig.5B

5C. Considering 100 MVA as base, find the voltages at buses 2 & 3 at the end of first iteration using G-S method for the system depicted in Fig.5C. Also find slack bus real & reactive power generation.

Fig.5C

(04)

(02)

(02)

(04)