

# MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

## V SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2019

### SUBJECT: DATABASE MANAGEMENT SYSTEMS [MTE 4011]

#### (27/11/2019)

Time: 3 Hours

#### MAX. MARKS: 50

#### Instructions to Candidates:

Answer ALL questions.

Data not provided may be suitably assumed

|              |                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |            |                 | Marks | CO  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------|-----------------|-------|-----|
| 1A.          | Cite an example of how specific clustering methods may be integrated, i.e., when<br>one clustering algorithm is used as a pre-preprocessing step for another. In addition<br>provide reasoning on why the integration of two methods may lead to improved<br>clustering quality and efficiency.                                                                                                                  |     |     |            |                 |       | CO4 |
| 1 <b>B</b> . | Association rule mining often generates a large number of rules. Discuss one effective method that can be used to reduce the number of rules generated while still preserving most of the interesting rules.                                                                                                                                                                                                     |     |     |            |                 |       | CO5 |
| 1C.          | Suppose that frequent item sets are saved for a large transaction database, <i>DB</i> . Discuss how to efficiently mine the (global) association rules under the same minimum support threshold if a set of new transactions, denoted as $\Delta DB$ , is (incrementally) added in.                                                                                                                              |     |     |            |                 |       | CO5 |
| 2A.          | Construct a decision-tree classifier with binary splits at each node, using tuples in relation $r$ ( $A$ , $B$ , $C$ ) shown below as training data; attribute $C$ denotes the class. Show the final tree, and with each node show the best split for each attribute along with its information gain value.<br>(1, 2, a), (2, 1, a), (2, 5, b), (3, 3, b), (3, 6, b), (4, 5, b), (5, 5, c), (6, 3, b), (6, 7, c) |     |     |            |                 | 3     | CO5 |
| 2B.          | The following Table 2B an example of customer purchase transaction data set.<br>Calculate the support and confidence of the following association rule. Infer<br>whether the items in the association rule are independent of each other or have<br>negative or positive impacts on each other.<br>$\{10\} \rightarrow \{50,70\}$                                                                                |     |     |            |                 |       | CO5 |
|              | Table 2B                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |            |                 |       |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                  | CID | TID | Date       | Items Purchased |       |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | 1   | 01/01/2001 | 10, 20          |       |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | 2   | 01/02/2001 | 10, 30, 50, 70  |       |     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                  | 1   | 3   | 01/03/2001 | 10, 20, 30, 40  |       |     |

|            |                                                                                                                                                                           | 2                                                                                                                                                                                                          |                                                                                           | 4                                                                                                                 | 01/03/2001                                                                                             |                                                                                 | 20, 30                                           |     |            |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-----|------------|
|            |                                                                                                                                                                           | 2                                                                                                                                                                                                          |                                                                                           | 5                                                                                                                 | 01/04/2001                                                                                             | 20                                                                              | 0, 40, 70                                        |     |            |
|            |                                                                                                                                                                           | 3                                                                                                                                                                                                          |                                                                                           | 6                                                                                                                 | 01/04/2001                                                                                             | 10,                                                                             | 30, 60, 70                                       |     |            |
|            | -                                                                                                                                                                         | 3                                                                                                                                                                                                          |                                                                                           | 7                                                                                                                 | 01/05/2001                                                                                             | 10                                                                              | 0, 50, 70                                        |     |            |
|            | -                                                                                                                                                                         | 4                                                                                                                                                                                                          |                                                                                           | 8                                                                                                                 | 01/05/2001                                                                                             | 10                                                                              | 0, 20, 30                                        |     |            |
|            | -                                                                                                                                                                         | 4                                                                                                                                                                                                          |                                                                                           | 9                                                                                                                 | 01/06/2001                                                                                             | 20                                                                              | 0, 40, 60                                        |     |            |
|            | -                                                                                                                                                                         | 5                                                                                                                                                                                                          |                                                                                           | 10                                                                                                                | 01/11/2001                                                                                             | 10,                                                                             | 20, 30, 60                                       |     |            |
|            | Note: C                                                                                                                                                                   |                                                                                                                                                                                                            |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
| 2C.        | Let the                                                                                                                                                                   | Let the following relational schemas be given:                                                                                                                                                             |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
|            | R = (A, B, C); S = (D, E, F)                                                                                                                                              |                                                                                                                                                                                                            |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
|            | calculu                                                                                                                                                                   | s that is equivale                                                                                                                                                                                         | nt to each                                                                                | n of the follow                                                                                                   | ving:                                                                                                  |                                                                                 | uple relational                                  |     |            |
|            | a) $\Pi_A(n)$                                                                                                                                                             | r)<br>(m)                                                                                                                                                                                                  |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
|            | c) $\Pi_{A,F}$                                                                                                                                                            | $(\sigma_{C=D}(r \times s))$                                                                                                                                                                               |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
| 3A.        | Consid                                                                                                                                                                    | er the relational s                                                                                                                                                                                        | schema o                                                                                  | f Figure 3A.                                                                                                      |                                                                                                        |                                                                                 |                                                  | 6   | CO2        |
|            |                                                                                                                                                                           | en                                                                                                                                                                                                         | nployee (pe                                                                               | erson_name, stre                                                                                                  | eet, city)                                                                                             |                                                                                 |                                                  |     |            |
|            |                                                                                                                                                                           | <i>w</i>                                                                                                                                                                                                   | orks (perso<br>mpany (co                                                                  | m_name, compa<br>mpany_name, c                                                                                    | ny_name, sau<br>ity)                                                                                   | iry)                                                                            |                                                  |     |            |
|            |                                                                                                                                                                           | m                                                                                                                                                                                                          | anages (pe                                                                                | rson_name, mai                                                                                                    | uager_name)                                                                                            |                                                                                 |                                                  |     |            |
|            |                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                           | Figure 3A                                                                                                         | L                                                                                                      |                                                                                 |                                                  |     |            |
|            | Develop an expression in the relational algebra to express the following query;                                                                                           |                                                                                                                                                                                                            |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
|            | <ul><li>a) List the names of all employees who do not work for "First Bank Corporation".</li><li>b) List the names of all employees managed by Mark Zuckerberg.</li></ul> |                                                                                                                                                                                                            |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  |     |            |
| <b>3B.</b> | Consider following Table 3B.                                                                                                                                              |                                                                                                                                                                                                            |                                                                                           |                                                                                                                   |                                                                                                        |                                                                                 |                                                  | 4   | CO1        |
|            |                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                           | Table 3B                                                                                                          | 1                                                                                                      |                                                                                 | 1                                                |     |            |
|            | ID<br>22222                                                                                                                                                               | name<br>D Einstein                                                                                                                                                                                         | salary                                                                                    | aept_name                                                                                                         | building                                                                                               | budget                                                                          | 1                                                |     |            |
|            | 1212                                                                                                                                                                      | 1 Wu                                                                                                                                                                                                       | 90000                                                                                     | Finance                                                                                                           | Painter                                                                                                | 120000                                                                          |                                                  |     |            |
|            | 3234                                                                                                                                                                      | 3 El Said                                                                                                                                                                                                  | 60000                                                                                     | History                                                                                                           | Painter                                                                                                | 50000                                                                           |                                                  |     |            |
|            | 4556                                                                                                                                                                      | 5 Katz                                                                                                                                                                                                     | 75000                                                                                     | Comp. Sci.                                                                                                        | Taylor                                                                                                 | 100000                                                                          |                                                  |     |            |
|            | 9834                                                                                                                                                                      | 5 Kim                                                                                                                                                                                                      | 72000                                                                                     | Elec. Eng.                                                                                                        | laylor                                                                                                 | 85000                                                                           |                                                  |     |            |
|            | 1010                                                                                                                                                                      | 1 Srinivasan                                                                                                                                                                                               | 65000                                                                                     | Comp. Sci.                                                                                                        | Taylor                                                                                                 | 100000                                                                          |                                                  |     |            |
|            |                                                                                                                                                                           | A CHINEFERONIC                                                                                                                                                                                             | (2000                                                                                     | History                                                                                                           | Painter                                                                                                | 50000                                                                           |                                                  |     |            |
|            | 5858                                                                                                                                                                      | 3 Califieri                                                                                                                                                                                                | 62000                                                                                     | ********                                                                                                          |                                                                                                        |                                                                                 |                                                  |     |            |
|            | 5858<br>8382                                                                                                                                                              | 3 Califieri<br>1 Brandt                                                                                                                                                                                    | 92000                                                                                     | Comp. Sci.                                                                                                        | Taylor                                                                                                 | 100000                                                                          |                                                  |     |            |
|            | 5858<br>8382<br>1515                                                                                                                                                      | 3 Califieri<br>1 Brandt<br>1 Mozart                                                                                                                                                                        | 92000<br>40000                                                                            | Comp. Sci.<br>Music                                                                                               | Taylor<br>Packard                                                                                      | 100000<br>80000                                                                 |                                                  |     |            |
|            | 5858<br>8382<br>1515<br>3345                                                                                                                                              | 3 Califieri<br>1 Brandt<br>1 Mozart<br>66 Gold                                                                                                                                                             | 92000<br>40000<br>87000                                                                   | Comp. Sci.<br>Music<br>Physics                                                                                    | Taylor<br>Packard<br>Watson<br>Painter                                                                 | 100000<br>80000<br>70000                                                        |                                                  |     |            |
|            | 5858<br>8382<br>1515<br>3345<br>7654                                                                                                                                      | <ul> <li>Califieri</li> <li>Brandt</li> <li>Mozart</li> <li>Gold</li> <li>Singh</li> </ul>                                                                                                                 | 92000<br>92000<br>40000<br>87000<br>80000                                                 | Comp. Sci.<br>Music<br>Physics<br>Finance                                                                         | Taylor<br>Packard<br>Watson<br>Painter                                                                 | 100000<br>80000<br>70000<br>120000                                              |                                                  |     |            |
|            | 5858<br>8382<br>1515<br>3345<br>7654<br>Explain                                                                                                                           | 3     Califieri       1     Brandt       1     Mozart       6     Gold       3     Singh       1     two                                                                                                   | 82000<br>92000<br>40000<br>87000<br>80000<br>caused                                       | Comp. Sci.<br>Music<br>Physics<br>Finance<br>by the desi                                                          | Taylor<br>Packard<br>Watson<br>Painter<br>gn given ir                                                  | 100000<br>80000<br>70000<br>120000<br>1 the tab                                 | le. Suggest a                                    |     |            |
| 44         | 5858<br>8382<br>1515<br>3345<br>7654<br>Explair<br>normal                                                                                                                 | 3     Califieri       1     Brandt       1     Mozart       6     Gold       3     Singh                                                                                                                   | 62000<br>92000<br>40000<br>87000<br>80000<br>caused<br>to resolv                          | Comp. Sci.<br>Music<br>Physics<br>Finance<br>by the designed<br>the anomal                                        | Taylor<br>Packard<br>Watson<br>Painter<br>gn given ir<br>y in the table                                | 100000<br>80000<br>70000<br>120000<br>n the tab                                 | le. Suggest a                                    | 3   | C03        |
| 4A.        | 5858<br>8382<br>1515<br>3345<br>7654<br>Explair<br>normal<br>Explair                                                                                                      | 3       Califieri         1       Brandt         1       Mozart         6       Gold         3       Singh         n       two       problems         ization technique       the distinctions             | caused<br>caused<br>among th                                                              | Comp. Sci.<br>Music<br>Physics<br>Finance<br>by the designed<br>the anomal<br>the terms prima                     | Taylor<br>Packard<br>Watson<br>Painter<br>gn given ir<br>y in the table<br>try key, cand               | 100000<br>80000<br>70000<br>120000<br>n the tab<br>e.<br>lidate key             | le. Suggest a<br>and super key.                  | 3   | C03        |
| 4A.<br>4B. | 5858<br>8382<br>1515<br>3345<br>7654<br>Explair<br>normal<br>Explair<br>Design                                                                                            | 3       Califieri         1       Brandt         1       Mozart         6       Gold         3       Singh         a       technique         a       database       for         a       database       for | 62000<br>92000<br>40000<br>87000<br>80000<br>caused<br>to resolv<br>among th<br>an airlin | Comp. Sci.<br>Music<br>Physics<br>Finance<br>by the designer<br>the anomal<br>the terms primation<br>the company. | Taylor<br>Packard<br>Watson<br>Painter<br>gn given ir<br>y in the table<br>try key, cand<br>The databa | 100000<br>80000<br>70000<br>120000<br>h the tab<br>e.<br>lidate key<br>use must | le. Suggest a<br>and super key.<br>keep track of | 3 7 | CO3<br>CO3 |

|              | include an E-R diagram, a set of relational schemas, and a list of constraints,      |   |     |  |  |  |
|--------------|--------------------------------------------------------------------------------------|---|-----|--|--|--|
|              | including primary-key and foreign-key constraints.                                   |   |     |  |  |  |
| 5A.          | Compute the closure of the following set of functional dependencies for the          | 3 | CO3 |  |  |  |
|              | relational schema $r(A, B, C, D, E)$ .                                               |   |     |  |  |  |
|              | $A \rightarrow BC$                                                                   |   |     |  |  |  |
|              | $CD \rightarrow E$                                                                   |   |     |  |  |  |
|              | $B \rightarrow D$                                                                    |   |     |  |  |  |
|              | $E \rightarrow A$                                                                    |   |     |  |  |  |
|              | List the candidate keys for R.                                                       |   |     |  |  |  |
| 5 <b>B</b> . | The definition of a schedule assumes that operations can be totally ordered by time. | 3 | CO3 |  |  |  |
|              | Consider a database system that runs on a system with multiple processors, where     |   |     |  |  |  |
|              | it is not always possible to establish an exact ordering between operations that     |   |     |  |  |  |
|              | executed on different processors. However, operations on a data item can be totally  |   |     |  |  |  |
|              | ordered.                                                                             |   |     |  |  |  |
|              | Does the above situation cause any problem for the definition of conflict            |   |     |  |  |  |
|              | serializability? Explain your answer.                                                |   |     |  |  |  |
| 5C.          | Consider the bank database of Figure 5C where the primary keys are underlined and    | 4 | CO3 |  |  |  |
|              | the following query holds.                                                           |   |     |  |  |  |
|              |                                                                                      |   |     |  |  |  |
|              | branch( <u>branch_name</u> , branch_city, assets)                                    |   |     |  |  |  |
|              | customer (customer_name, customer_street, customer_city)                             |   |     |  |  |  |
|              | loan (loan_number, branch_name, amount)                                              |   |     |  |  |  |
|              | borrower ( <u>customer_name</u> , <u>loan_number</u> )                               |   |     |  |  |  |
|              | account ( <u>account_number</u> , branch_name, balance)                              |   |     |  |  |  |
|              | depositor ( <u>customer_name</u> , <u>account_number</u> )                           |   |     |  |  |  |
|              |                                                                                      |   |     |  |  |  |
|              | Figure 5C                                                                            |   |     |  |  |  |
|              | <b>Select</b> 1.branch_name                                                          |   |     |  |  |  |
|              | <b>irom</b> <i>branch</i> 1, <i>branch</i> S                                         |   |     |  |  |  |
|              | where $I$ assest > 5. assests and 5. branch_city = Brooklyn                          |   |     |  |  |  |
|              | Develop an efficient relational algebra expression that is equivalent to this query. |   |     |  |  |  |
|              | Justify your choice.                                                                 |   |     |  |  |  |