SEMESTER B.TECH END SEMESTER EXAMINATIONS NOVEMBER/DECEMBER 2019

SUBJECT: Protein Engineering [BIO 4008]

Date of Exam: 28-11-2019 Time of Exam: 2-5 PM Max. Marks: 50

Instructions to Candidates:

❖ Answer ALL the questions & missing data may be suitable assumed

1A.	It is a common observation that antiparallel strands in a β sheet are connected by short loops, but that parallel strands are connected by α helices. Why do you think this is?						
1B.	Explain the type of amino acid, interactions and packing in coiled-coil protein structure.						
10	 A specific protein has an 18-residue long α-helix with the following sequence: PENQWKQELDTRYRNALQ i. How many full turns are in this α-helix? ii. How many hydrogen bonds between the backbone atoms are in this helix? Explain your reasoning. iii. Identify all residues that are involved in the formation of the hydrophobic core and hydrophilic edges of the protein in aqueous environment. iv. In addition to hydrogen bonding, what other interactions could contribute to the stabilization of this helix? 						
2A.	Outline the steps involved in GroEL-GroES assisted proteins folding. How does this response benefit the cell? How do you suppose the chaperones themselves manage to fold correctly?						
2B.	Explain the importance of amino acid proline in protein folding?						
2C.	GPCRs activate G proteins by reducing the strength of GDP binding, allowing GDP to dissociate and GTP, which is present at much higher concentrations, to bind. How do you suppose the activity of a G protein would be affected by a mutation that caused its affinity for GDP to be reduced without significantly changing its affinity for GTP?						
3A.	Explain the entire events of conformational changes in protein kinase for cell cycle regulation?						
3B.	Why do you suppose formation of hydrophobic patches serve as critical signals for the identification of diseased and normal protein? Explain with an example?						
3C.	Why do you determine protein structure?	2					
4A.	A peptide was digested using trypsin and chymotrypsin. Sequencing results of the cleaved product are. Trypsin treatment: YLDR, GSAK, WGSM. Pepsin treatment: YLDR, GSAK, WGSM. i. What is the sequence of your peptide? ii. Explain why neither of these steps alone is sufficient to unambiguously determine the sequence of your peptide?						

	iii. Can you use any of the other three cleavage agents listed in the table in order to unambiguously determine the sequence? Explain your answer.iv. Can you use peptide hydrolysis with 6M HCl to solve the problem? Explain your answer.						
4B.	For separation of proteins by two-dimensional polyacrylamide-gel electrophoresis, what are the two types of electrophoresis that are used in each dimension? Does that makes any difference which electrophoretic method is applied first? Why or why not?						
4C.	Tropomyosin 93 kd and haemoglobin 65-kd is centrifuged. Explain the order of protein sedimentation. Can you think of an analogy from everyday experience that might help you with this sedimentation?						
5A.	Engineering a protein can be achieved by DNA shuffling. Outline the steps involved in the method.						
5B.	Protease added in laundry detergent becomes inactivated by temperature and bleach. Discuss protein engineering principles to improve protease efficiency.						
5C.	Uropathogen detection and chemical screening has great benefits for the diagnosis and treatment of urinary tract infections. Develop a portable and inexpensive analytical device for detecting the presence of pathogen and rapidly testing for nitrite on the same device.						

Supplementary table

Amino acid	alanine	arginine	asparagine	aspartic acid	asparagine or aspartic acid	cysteine	glutamic acid	glutamine
One letter code	А	R	N	D	В	С	E	Q
Amino acid	glutamine or glutamic acid	glycine	histidine	isoleucine	leucine	lysine	methionine	phenylalani ne
One letter code	Z	G	Н	I	L	К	M	F
Amino acid	proline	serine	threonine	tryptophan	tyrosine	valine		
One letter code	Р	S	Т	W	Υ	V		