Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOVEMBER 2019

FPGA BASED SYSTEM DESIGN [ELE 4002]

		REVISED CREDIT SYSTEM	
Time: 3 Hours Date: 26 November 2019			Max. Marks: 50
Instru	ictions	to Candidates:	
		nswer ALL the questions.	
	✤ Mi	issing data may be suitably assumed.	
1A.	techn	ach of the system constraints given below, choose the most appr nology among FPGA, standard cell, and full-custom IC technology ementing a given circuit. Justify your answers.	
	i. ii.	A system must exist as a physical prototype by next week The system should be as small and low-power as possible design time and low cost are not priorities.	
	iii.	The system should be reprogrammable even after the final phas been produced.	product
	iv.	The system should be as fast as possible and should consume power as possible, subject to being completely implemented in few months.	
	۷.	Only five copies of the system will be produced and we have n than Rs 1 lakh to spend on all ICs.	o more (05)
1B.	given	ch & explain the CMOS based logic circuit for the problem stand below. A house energy monitor system should sound an alarn and light is detected inside a room but motion is not detected.	
1C.		t are the important features and advantages of dyna nfigurable FPGAs?	mically (02)
2A.	Expla usage	ain the structure of CLB in Xilinx Spartan IIE highlighting its me	odes of (05)
2B.		he circuit shown in Fig Q2B give the set of test vectors that dete uck-at-0 faults in the circuit. Make sure to use the minimum nur ors.	
		A	
		Fig Q2B	

2C.	With the help of circuit diagram explain a typical boundary scan cell.	(02)
3A.	Explain the programming technology used by Actel in FPGAs with necessary diagram.	(03)
3B.	Write Verilog test bench code for half adder. Display the message "error" if half adder outputs is not matching with expected functionality. Assume the Verilog code for the design under test is available with necessary input and output.	(03)
3C.	Implement the following digital components using ACT-1 logic module. i) 4:1 mux ii) 3 input EXOR gate	(04)
4A .	What are the benefits of using a soft embedded processor in an FPGA over a hard macro implementation?	(02)
4B.	Draw the synthesized circuit for the Verilog code given. module addborcb(x, a, b, c, d); input wire [15:0] a, b, c; input wire d; output reg [15:0] x; reg [15:0] t; always @ (a or b or c or d) begin if (d) t = b; else t = c; if (a < 8) t = t + 12; x = a + t; end endmodule	(04)
4C.	Implement digital circuit to add two 3 bit number in Spartan 2E FPGA usingi. LUTs and dedicated mux (if necessary)ii. LUTs and carry control logic	
E۸	How many CLBs are required for the implementation?	(04)
5A.	 Which of the following implementations are not possible? i. A custom processor on an FPGA ii. A custom processor on a full-custom IC iii. A programmable processor on an FPGA iv. A programmable processor on an ASIC v. A programmable processor on a full-custom IC Explain your answer. 	(05)
5B.	The impulse response of a linear phase FIR filter is $h(n)=[2 \ 1 \ 1 \ 2]$. Develop look-up and serial adder based architecture for 4 tap symmetrical FIR filter suitable to implement in an FPGA. Explain the developed architecture. Determine response of developed filter for the input $x(n)=[2 \ 1 \ 2]$. Mention the partial output for each bit shift of the shift register.	(05)