

VII SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV 2019

SUBJECT: ROBOT PATH PLANNING [MTE 4008]

(28/11/2019, 2:00 PM-5:00 PM)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Data not provided may be suitably assumed

1A.	Explain the definitions of configuration space and workspace by taking an	3	CO1
	example of two-joint arm manipulator.		
1 B .	Write the class of approaches that addresses the problem of gradient descent method.	2	CO1
1C.	Construct the equations of U_{att} and U_{rep} with proper explanations by making use of Fig. 1C(a) and Fig. 1C(b) given below	5	CO1
	Fig. 1C (a): Repulsive gradient operating in a domain near the obstacles.Fig. 1C(b): The gradient is a unit vector pointing away from the nearest point.		
2A.	Interpret the Hessian matrix for a real-valued function in an artificial potential functions.	3	CO1
2B.	Construct a Dijkstra's algorithm for Fig. 2B by choosing a starting vertex and assigning infinity path values to all the other vertices.	4	CO2

	Fig. 2B: Graph for Dijkstra's algorithm.		
2C.	Construct the state space matrix for a third-order polynomial trajectory planning.	3	CO4
3A.	Illustrate that one-dimensional deformation retracts are roadmaps.	3	CO3
3B.	State the pre-image theorem with a proper example and critical points in the properties of GVD roadmap.	5	CO3
3C.	Interpret Morse cell decomposition definition with a neat sketch.	2	CO3
4 A.	Design a control law using Lyapunov stability for a GVG edge tracing with two obstacles.	5	CO3
4B.	Analyze and design a complexity based coverage path with proper boundary conditions for Fig. 4B. $\label{eq:fig:abs}$ Fig. 4B: Δ is the diameter of the minimal disk that fully contains the space.	5	CO3
5A.	Give an outline on the pseudocode of the Rapidly Exploring Random Trees with an example.	5	CO3
5B.	Explain on the steps of the time-scaling algorithm in a decoupled trajectory planning with proper diagram.	5	CO4