

VII SEMESTER B.TECH. (MECHATRONICS ENGINEERING) END SEMESTER EXAMINATIONS, 2019

SUBJECT: ROBOT PATH PLANNING [MTE 4008]

(/11/2019, 2:00 PM-5:00 PM)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

Data not provided may be suitably assumed

			GO1
1A.	Compare any three robotic systems with its topology and its sample	3	CO1
	representation.		
1B.	Explain regarding tracing the boundary of a polygon robot translating & rotating	2	CO1
	in 2-D workspace.		
1C.	Construct the equations of one-dimensional surfaces given in Fig. 1C, also, state	5	CO1
	the correlation of homeomorphism and diffeomorphism among them.		
	Circle Ellipse Racetrack		
	Fig. 1C: One-dimensional surfaces.		
2A.	State the Minkowski sum and differences of two complex polygon.	3	CO1
2B.	Construct a graph for Fig. 2B in terms of A* search algorithm and write its	4	CO2
	pseudocode.	-	
	P		

	<pre>{ 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 }, { 1, 1, 1, 0, 1, 1, 1, 0, 1, 1 }, { 1, 1, 1, 0, 1, 1, 0, 1, 0, 1 }, { 0, 0, 1, 0, 1, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 0, 1, 0 }, { 1, 0, 1, 1, 1, 1, 0, 1, 0, 0 }, { 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 }, { 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 }, { 1, 1, 1, 0, 0, 0, 1, 0, 0, 1 } Fig. 2B: Input grid for the A* search algorithm.</pre>		
2C.	It is desired to have the first joint of a 6-axis robot go from initial angle of 30° to a final angle of 75° in 5 seconds. Using a third-order polynomial, calculate the joint angle at 1, 2, 3, and 4 seconds.	3	CO4
3A.	Write the different types of roadmaps along with the necessary sketches.	3	CO3
3B.	Analyze and write the properties of GVD roadmap by stating its critical points.	5	CO3
3C.	Write the deformation retract definition with a neat sketch.	2	CO3
4A.	Design the Canny's roadmap algorithm giving its critical values and critical points.	5	CO3
4B.	Analyze and design the Boustrophedon Decomposition algorithm for Fig. 4B given below.	5	CO3
5A.	Write on the pseudocode of RRT* with an example.	5	CO3
5B.	Explain the steps of zero-points inertia in a decoupled trajectory planning with proper diagram.	5	CO4