

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

SEMESTER B.TECH.

END SEMESTER MAKEUP EXAMINATIONS, JANUARY 2020 SUBJECT: ENGINEERING MATHEMATICS I [MAT 1151]

REVISED CREDIT SYSTEM

(01/01/2020)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

Answer ALL the questions. Missing data may be suitably assumed.

Q1A. Evaluate $\int_0^{\frac{\pi}{2}} sinx \, dx$ by Simpson's one-third rule dividing the range into six equal parts. (3)

Q1B. Solve
$$(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$$
 (3)

Q1C. Using 4th order Runge Kutta method , solve $y' = 1 + y^2$ with y(0)=0 at x= 0.4 in steps of length h=0.2. (4)

Q2A. Find a real root of the equation $x^3 - 4x - 9 = 0$, using the bisection method given that the root lies between 2 and 3. Carryout 4 iterations.(3)

Q2B. Solve
$$(2x+3)^2 \frac{d^2y}{dx^2} - (2x+3)\frac{dy}{dx} - 12y = 6x.$$
 (3)

Q2C. Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x sinx.$$
 (4)

Q3A. Find inverse using Gauss Jordan elimination method if

$$A = \begin{bmatrix} 8 & -4 & 0 \\ -4 & 8 & -4 \\ 0 & 4 & 0 \end{bmatrix}$$
(3)

Q3B. If V is a vector space of dimension n, show that any orthonormal set of n vectors of V forms a basis of V. (3)

Q3C. Solve 5x+2y+z=12, x+4y+2z=15, x+2y+5z=20. by Gauss-Seidel iteration method. Carry out four iterations. (4)

Q4A. Apply Taylor's series method to obtain approximate value of y at

x = 0.2 for the differential equation $y' = 2y + 3e^x$, y(0) = 0. (3)

Q4B. Solve by the method of variation of parameters $(D^2 + 4)y = \tan 2x$.

Q4C. Construct orthonormal Basis using Gram-Schmidt orthogonalisation process from the set of vectors $\{(1,1,1), (1,0,1), (1,1,0)\}$ (4)

(3)

(3)

Q5A. Estimate the value of y(3.8) for the following data using Newton backward interpolation formula.

x	0	1	2	3	4
У	1	1.5	2.2	3.1	4.6

Q5B. Solve by Gauss elimination method

2x + y + 4z = 12, 4x + 11y - z = 33, 8x - 3y + 2z = 20. (3) Q5C. Certain corresponding values of x and y are given below. Find y at 310 using Lagrange's interpolation formula.

X	300	304	305	307	
У	2.4771	2.4829	2.4843	2.4871	
					(4)
