

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER-2019 I SEMESTER B.Sc. (Applied Sciences) in Engg. MATHEMATICS - 1 [IMA 111]

Marks: 50 Duration: 180 mins.

Answer all the questions.

- If $y = e^{m \sin^{-1} x}$ prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$. (3)
 - Find the nth derivative of (i) $y = e^{2x} cos^2 x sinx$ (ii) $\frac{x+3}{(x-1)(x+2)}$ (4)
 - Derive the expression for angle between the radius vector and tangent.
- Expand $log(1 + e^x)$ by Maclaurin's series up to the term containing x^4 .
 - Evaluate (i) $\lim_{x \to 1} \frac{x^x x}{x 1 \log x}$ (ii) $\lim_{x \to 0} (\cot x)^{1/\log x}$. (4)
 - Verify Cauchy's mean-value theorem for the function e^x and e^{-x} in the interval (a, b).
- Discuss the convergence of the series, (a) $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots$ (b) $\sum_{n=1}^{\infty} \frac{n!}{(n^n)^2}$
 - Find the equation of the plane through the points (2,2,1) and (1,1,2) and perpendicular to the plane 2x + 6y + 6z = 9.
 - The radius of a normal section of a right circular cylinder is 2 units, the axis lies along the straight line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$. Find the equation of the right circular cylinder
- Obtain a reduction formula for $\int_0^{\pi/2} \cos x \, dx$. when n is a non-negative integer and evaluate $\int_0^3 \sqrt{\frac{x^2}{3-x}} \, dx$.
 - Trace the curve $v^2(a-x) = x^3$, a > 0 with explanation. (3)
 - C) Find the missing term from the following table. (3)

3	ĸ	0	1	2	3	4	5
f	f(x)	1	2	4	8		32

Find the perimeter of the curve $x^{2/3} + y^{2/3} = a^{2/3}$, a > 0

- Find the distance of the point (1, -2, 3) from the plane x y + z = 5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-3}$.
- Find the volume of the solid obtained by revolving one arc of the cycloid $x = a(\theta + sin\theta)$, $y = a(1 + cos\theta)$, a > 0 about the x-axis.

----End-----

(3)