Question Paper

Exam Date & Time: 13-Nov-2019 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES **END SEMESTER THEORY EXAMINATIONS NOVEMBER 2019** I SEMESTER B.sc. (Applied Sciences) in Engg. **MATHEMATICS - 1 [IMA 111]**

Duration: 180 mins. Marks: 100

Answer 5 out of 8 questions.

Missing data, if any, may be suitably assumed

1) (6)

Test for convergence of the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \cdots \dots \dots$ A)

B) (6) Test for convergence of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \cdots \dots \dots$

C) (8)Test for absolute convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$

2) (6) Trace the curve $y^2(2a - x) = x^3$.

A)

B) (6) If $y = e^{a \sin^{-1} x}$. Prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$.

C) (8) Prove that $\log(1+x) = \frac{x}{1+\theta x}$, where $0 < \theta < 1$. Hence deduce that $\frac{x}{1+x} < \log(1+x) < x$, x > 0

3) (6)

State and prove Cauchy's mean-value theorem. A)

B) (6) Evaluate $\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$

C) (8)

Expand $e^{\sin x}$ in powers of x up to the term containing x^4 .

Page #1

- 4)
- Find the angle of intersection of the curves $r = \sin \theta + \cos \theta$, $r = 2 \sin \theta$.
 - B) Show that radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta), y = a(1 \cos \theta) \text{ is } 4 \text{ a } \cos \frac{\theta}{2}$ (6)
 - Show that the evolute of the cycloid $x = a(\theta \sin \theta), y = a(1 \cos \theta)$ is another equal cycloid. (8)
- Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + 4Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + 4z + 10y 4z 8 = 0, x + y + 4z + 10y 4z 8 = 0, x + y + 4z + 10y 4z 8 = 0, x + y + 4z + 10y 4z 8 = 0, x + y + 10y 1
 - Find the equations of the spheres passing through the circle $x^2 + y^2 + z^2 6x 2z + 5 = 0$, y = 0 and touching the plane 3y + 4z + 5 = 0.
 - Find the equation of the right circular cone generated when the straight line 2y + 3z = 6, x = 0 revolves about z-axis.
- The radius of a normal section of a right circular cylinder is 2 units; the axis lies along the straight line $\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z-2}{5}$. Find its equation.
 - B)
 Find the missing values in the following table using finite difference method.

X	45	50	55	60	65
Y	3.0	A	2.0	В	-2.4

C)
From the following table estimate the number of students who obtained marks between 40 and 45

15						
Marks	30-40	40-50	50-60	60-70	70-80	
Number of	31	42	51	35	31	
students						

7)

From the following table, find f (9) using Lagrange's formula

A)

x	5	7	11	13	17
f(x)	150	392	1492	2366	5202

B) (6)

(8)

Determine f(x) as a polynomial in x from the following data using Divided difference Method

x	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

C) (8)

Obtain a reduction formula for $\int \sin^n x dx$ when n is a non-negative integer

- 8)
 - Find the length of one arc of the cycloid $x = a(t \sin t)$, $y = a(1 \cos t)$.
 - B) Find the volume of a sphere of radius a. (6)
 - Find the area common to the parabola $y^2 = ax$ and the circle $x^2 + y^2 = 4ax$. (8)

----End-----