Question Paper

Exam Date & Time: 15-Nov-2019 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER-2019 I SEMESTER B.Sc. (Applied Sciences) in Engg. PHYSICS - I [IPH 111 - S2]

Marks: 50

Duration: 180 mins.

Answer all the questions.

Physical Constants:	
Elementary charge:	1.6 x 10 ⁻¹⁹ C
Mass of electron:	9.1 x 10 ³¹ kg
Boltzmann constant:	1.38 x 10 ²³ J/K
Planck's constant:	6.625 x 10 ⁻³⁴ J.s
Stefan-Boltzmann constant: 5.67 x 10 ⁸ W/m2K4	
Speed of light in vacuum:	3.0 x 10 ⁸ m/s

- ¹⁾ Discuss qualitatively, the Fraunhofer diffraction at a single-slit with ⁽⁴⁾ necessary diagram.
 - A)

B) Give the schematic plot of the intensity of light in a double-slit interference ⁽²⁾ against phase-difference.

^{C)} The wavelength of the incident light is λ = 572 nm, rays A and B in figure are ⁽⁴⁾ out of phase by 1.50 λ . Find the thickness d of the fllm.

2)

- Using the energy and momentum conservation, derive an expression for the $^{(5)}$ wavelength of the scattered photon (λ ') in Compton effect experiment.
- A) B)
- A beam of light is linearly polarized in the vertical direction. The beam falls ⁽²⁾ at normal incidence on a polarizing sheet with its polarizing direction at 58.8° to the vertical. The transmitted beam falls, also at normal incidence,

on a second polarizing sheet with its polarizing direction horizontal. The intensity of the original beam is 43.3 W/m^2 . Find the intensity of the beam transmitted by the second sheet.

- Light of wavelength 500 nm is incident normally on a diffraction grating. If (3) the third-order maximum of the diffraction pattern is observed at 32.0° (a) what is the number of rulings per centimeter for the grating? (b) Determine the total number of primary maxima that can be observed in this situation.
- Give a brief account of tunneling of a particle through a potential energy (4) barrier.
 - B) Electrons are ejected from a metallic surface with speeds ranging up to 4.60 ⁽⁴⁾ x 10⁵ m/s when light with a wavelength of 625 nm is used. (a) What is the work function of the surface? (b) What is the cut-off frequency for this surface?
 - ^{C)} Find the minimum kinetic energy of a proton (assume non-relativistic $^{(2)}$ situation) confined within a nucleus having a diameter of 1.0×10^{-15} m.
- 4) Calculate the most probable value of r for an electron in the ground state of ⁽⁵⁾ H-atom.
 - A) The wave function for an electron in H-atom is

5)

$$\psi_{1S}(\mathbf{r}) = \frac{1}{\sqrt{\pi a_0^3}} \exp\left(-\frac{\mathbf{r}}{a_0}\right)$$

- ^{B)} Sketch schematically, the lowest two energy states, wave-functions, (2) probability densities for the particle in a potential well of finite height.
- C) Give the physical interpretation of the three integral quantum numbers. (3)
- Distinguish between conductors, semiconductors and insulators on the basis of band theory of solids.
 - B) Write down Fermi-Dirac distribution function and hence define fermi energy. ⁽²⁾
 - ^{C)} (i) Each atom of gold contributes one electron to the metal. Compute the ⁽⁵⁾ Fermi energy for gold. (ii) Calculate the energy of a conduction electron in silver at 800 K, assuming the probability of finding an electron in that state is 0.950. The Fermi energy is 5.48 eV at this temperature. Given : electron concentration in gold =5.90 x 10^{28} /m³

-----End-----