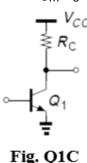
Question Paper

Exam Date & Time: 14-Nov-2019 (02:00 PM - 05:00 PM)


MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER2019 III SEMESTER B.sc. (Applied Sciences) in Engg. ANALOG ELECTRONIC CIRCUITS [IEC 231]

Marks: 100

Answer 5 out of 8 questions. Missing data may be suitably assumed.

- 1) (5) Draw and explain the circuit diagram of common base configuration using NPN transistor. Plot the input and output characteristics. Indicate cut-off, saturation and A) active regions.
 - (5) B) The dc common base current gain for a certain transistor is, $\alpha_{dc} = 0.998$ Determine the emitter current I_E if the base current is $B=40\mu A$. Assume that the reverse saturation current, $I_{CBO}=2\mu A$ Also determine I_{CEO} .
 - C) (5) Draw the small signal equivalent of the CE amplifier shown in fig. Q1C. Obtain expressions for g_m ,r_e . and output resistance of the amplifier from the model.

D) (5) For the transistor (Silicon) circuit shown in fig. Q1D, $R_{n=}$ 100K Ω , R_{L} =820 Ω and V_{CC} =10V Assume V_{BE} , sat=0.8V and V_{CE} , sat=0.2V. Find the minimum base and collector current required in order to keep the transistor in saturation. Neglect I_{CBO}. Explain briefly the working of the circuit and draw the output waveform.

Duration: 180 mins.

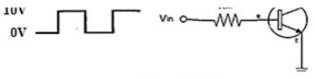
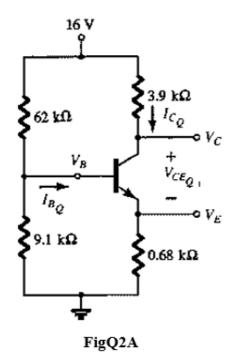
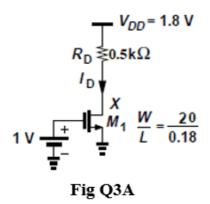



Fig. Q1D

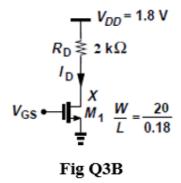
²⁾ Determine I_B, I_C, I_E, V_{CE}, V_B, V_C and V_E for the voltage divider configuration shown in ⁽¹⁰⁾ A) Fig Q2A given that β =80. Assume V_{BE}=0.7V. What is the region of operation? Neglect I_{CO}.

- B) Draw the circuit diagram of RC coupled amplifier with feedback using NPN transistor. ⁽⁵⁾ Mention the function of each component. Explain the working at low, medium and high frequencies.
- ^{C)} Plot the frequency response of RC coupled amplifier with and without feedback. (5) Indicate the salient features on the plot. In a 3-stage RC coupled amplifier, if the individual stage voltage gains are:A₁=50dB, A₂=0dB and A₃=10dB respectively, find the output voltage at each stage and overall gain in decibels if the input voltage applied is Vi=10sin($2\pi ft$) millivolts.

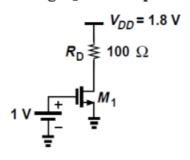

3)

(5)

A)


For the circuit in Fig. Q3A, $\mu_n C_{ox} = 100 \ \mu A/V^2$ and $V_{TH} = 0.4V$. Calculate

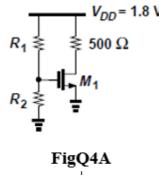
- i) Drain current.
- ii) If the gate voltage increases by 20 mV, what is the change in the drain voltage?
- iii) What choice of R_D places the transistor at the edge of the triode region with value of I_D as in part <u>i</u>)?
- iv) Determine the value of W/L that places M₁ at the edge of saturation with V_{GS} as in part i).


B)

Calculate the maximum allowable gate voltage in **Fig. Q3B**, if M₁ must remain (5) saturated. Assume $\mu_n C_{ox} = 100 \ \mu \text{A/V}^2$ and $V_{TH} = 0.4V$

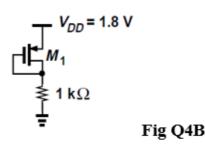
C)

If $\lambda = 0.1 / V$, $\mu_n C_{ox} = 100 \ \mu A/V^2$, $V_{TH}=0.4V$ and $W/L = \frac{10}{0.18}$, construct the small-signal model of the circuit shown in **Fig. Q3C.** Compute $V_{DS} g_m$ and r_o


(5)

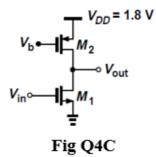
D)

An NMOS device with $\lambda = 0.1/V$ must provide a gain of 25 with $V_{DS} = 1$ V. Determine the required value of W/L, if $I_D = 1$ mA and $\mu_n C_{ox} = 100 \ \mu A/V^2$


⁴⁾ Design a circuit of **Fig. Q4A** for a drain current of 1 mA. If $W/L = \frac{10}{0.18}, \mu_n C_{ox} =$ ⁽⁵⁾

^{A)} 100 μ A/V², $V_{TH} = 0.4V$. Compute R1 and R2 such that the input impedance is at least 50 k. Ω

B)


If $W/L = \frac{20}{0.18}$, $\mu_p C_{ox} = 200 \ \mu \text{A/V}^2$ and $\lambda = 0$, determine V_{GS} , V_{DS} and I_{D} for the circuit shown in **Fig. Q4B**. Draw the small signal model.

C)

The CS stage of **Fig. Q4C** must provide a voltage gain of 10 with a bias current of 1 mA. Assume $\lambda_1 = \frac{0.2}{V}$, and $\lambda_2 = \frac{0.25}{V}$, $\mu_n C_{ox} = 100 \,\mu\text{A/V}^2$, $\mu_p C_{ox} = 50 \,\mu\text{A/V}^2 \,\text{V}_{\text{TH}} = 0.4 \,\text{V}$. (a) Compute the required value of $(\frac{W}{L})1$.

(b) If $(W/L)^{2=10}/0.18$, calculate the required value of V_b.

^{D)} In the circuit of **Fig. Q4D**, M₁ and M₂ have lengths equal to 0.2 μ m, $\mu_n C_{ox} = 100 \mu$ A/V^{2 (5)} <u>W</u> = 0.4W and $\lambda = 0.2$ /. Determine W₂ and W₂ such that I₂ = 2I₂ = 2 m Å Assume V_{Page #4}

(5)

(5)

 $v_{TH} = 0.4v$, and h = -/V. Determine w_1 and w_2 such that $i_X = 2i_Y = 2$ mA. Assume $v_{DS1} = V_{DS2} = V_B = 1V$. What is the output resistance of each current source?

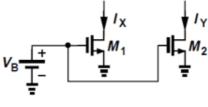


Fig Q4D

- ⁵⁾ State Barkhausen criteria for sustained oscillations. Draw the circuit diagram of Hartley ⁽⁵⁾ oscillator and explain its working. Write the expression for frequency of oscillations
 - A)
 - B) With the help of a circuit diagram, explain the working of transformer coupled Class B ⁽⁵⁾ push pull power amplifier. Derive an expression for the maximum power efficiency. Mention one drawback of this amplifier.
 - ^{C)} With the help of a block diagram, explain positive feedback. Derive an expression for ⁽⁵⁾ gain in a positive feedback amplifier. Mention the application of positive feedback.
 - D) State and explain Millers theorem with an illustration. Explain any one application of (5) this theorem with necessary circuit
- ⁶⁾ Draw the circuit diagram of High Frequency Model of MOSFET and explain. Write the ⁽⁵⁾ expressions for the cutoff frequencies on the input and output side of the amplifier.
 - A)
 - ^{B)} In an RC phase shift oscillator using FET, the value of resistors and capacitors in the ⁽⁵⁾ feedback circuit are R = 150 K Ω and C = 0.25 Nano Farads. Determine the frequency of oscillation. If the value of R_D =1k Ω and g_m = 2500millimhos, find the gain of the amplifier.
 - ^{C)} With suitable diagrams, explain how power amplifiers are classified based on the ⁽⁵⁾ operating point.
 - ^{D)} Determine the voltage gain, input and output impedance with feedback for voltage Series ⁽⁵⁾ feedback having A= -100, $R_i = 10k\Omega$ and $R_o = 20k\Omega$ for feedback of i) $\beta = -0.1$ ii) $\beta = -0.5$
- ⁷⁾ Draw the block schematic of i) Voltage shunt ii) Current series feedback amplifiers. ⁽⁵⁾
 ⁽⁵⁾ What is the effect of series and shunt feedback on the input and output resistance of an amplifier?
 - B) Draw the circuit diagram of a crystal oscillator and explain the working. Mention any ⁽⁵⁾ two advantages of Crystal oscillators.
 - C) Explain the construction, working and characteristics of MOSFET. Sketch output and ⁽⁵⁾ transfer characteristics.
 - D) With necessary current equation explain Triode and Saturation region in MOSFET. (5)
 Explain how current varies when width, length is varied with necessary plot.
- ⁸⁾ Explain the following:
 - i) Early effect in BJT
 - ii) Channel length modulation in MOSFET

(20)

iii) Advantages and disadvantages of Positive and Negative feedback

iv) Piezoelectric effect in crystals (5X4=20)

-----End-----