Question Paper

Exam Date & Time: 25-Nov-2019 (02:00 PM - 05:00 PM)

MANIPAL ACADEMY OF HIGHER EDUCATION

INTERNATIONAL CENTRE FOR APPLIED SCIENCES END SEMESTER THEORY EXAMINATIONS NOVEMBER-2019 III SEMESTER B.Sc. (Applied Sciences) in Engg. ANALOG AND DIGITAL SYSTEM DESIGN [IMET 234]

Marks: 100

Duration: 180 mins.

Answer 5 out of 8 questions.

Missing data may be suitably assumed.

1)	A)	Minimize the following output function using K-map. $F(X_1, X_2, X_3, X_4) = \Sigma m$ (1, 3, 5, 7, 8, 9, 12, 13) + d(14, 15).	(10)
	В)	Differentiate between combinational and sequential circuits. Draw the block diagram for asynchronous sequential circuit and explain briefly.	(10)
2)	A)	Convert (i) T flip-flop into JK flip-flop. (ii) JK flip-flop to SR flip-flop. Explain with truth table and excitation table neatly	(10)
	B)	Draw the block diagram of 4-bit Dual slope ADC.	(10)
3)	A)	Explain the working of a 4 bit R/2R ladder type DAC for the input combinations of 1000,0100, 0010 and 0001 with the help of appropriate circuit diagrams.	(10)
	В)	Explain the working of a D Flip-flop with neat circuit diagram, truth table and also derive the output equation using K-map.	(10)
4)		Design a MOD - 7 asynchronous counter using JK Flip flops.	(10)
	A) B)	Explain the working of a Johnson counter with neat logic diagram, timing diagram and the count table.	(10)
5)	A)	Implement the following Boolean function using an 8:1 multiplexer. $F(A, B, C, D) = A\overline{B} + BD + \overline{B}C\overline{D}$	(10)
	В)	Design astable multivibrator using 555 Timer for generating a train of pulses of 1.45 KHz and a duty cycle of 56%. Assume C = 0.47μ F. Design a monostable multivibrator using 555 timer to produce a pulse width	(10)

of 100ms. Calculate the value of R by assuming the values of C=0.47 μ F.

- ⁶⁾ Convert the following:
 - A) 42510 = -----(8) 529.4610 = _____(2) ABC.EF16 = ____(10) 42510 = ____(8) 1000.39062510 = ____(16)

^{B)} With a neat logic diagram, explain the working of a SISO shift register. ⁽¹⁰⁾

- ⁷⁾ With a neat circuit diagram, explain the working of 2 bit binary adder. ⁽¹⁰⁾
 - A)
 - B) Define a decoder. Explain the logic diagram of a 2 to 4 decoder with enable ⁽¹⁰⁾
 (E) input and a truth table.
- ⁸⁾ Explain the working of a synchronous Decade Counter. ⁽¹⁰⁾
 - A)
 - ^{B)} Describe how an Adder-Subtractor can be created using an Adder circuit ⁽¹⁰⁾ and a Subtractor circuit. Use the 741 Op-amp.

-----End-----

(10)