Reg. No.						

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal)

III SEMESTER B.TECH. (MECH/AUTO/AERO/MT/IP)

END SEMESTER EXAMINATIONS, NOV 2019

SUBJECT: ENGINEERING MATHEMATICS III - MAT 2151

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer **ALL** the questions.
- Missing data may be suitable assumed.

1A. Solve y'' - xy' = 0 with y(0) = 1, y(1) = 2 and $h = \frac{1}{4}$ using finite difference method.

1B. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, 0 < x < 1, 0 < y < 1, u(x, 1) = u(0, y) = 0,

$$u(1, y) = 9(y - y^2), u(x, 0) = 9(x - x^2) \text{ and } h = \frac{1}{3}.$$

1C. Use Crank-Nicolson method to solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, 0 < x < 1, t > 0, $u(x, 0) = 100 \sin \pi x$, u(0, t) = u(1, t) = 0Take $h = \frac{1}{4}$ and $\lambda = 1$. calculate the solution for one time level.

(3+3+4)

2A. Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 16 \frac{\partial^2 u}{\partial x^2}$, 0 < x < 5, t > 0, $u(x, 0) = x^2(5 - x)$,

 $\frac{\partial u}{\partial t}(x,0) = 0, u(0,t) = u(5,t) = 0, h = 1.$ Find u for four time steps.

2B. Obtain Fourier series for $f(x) = x(2\pi - x)$, where $f(x + 2\pi) = f(x)$ in $0 < x < 2\pi$. Hence deduce

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \dots = \frac{\pi^2}{6}$$

2C. Compute up to second harmonics of the Fourier series of f(x) given in the following table where $f(x + 2\pi) = f(x)$.

Reg. No.

X	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$
f(x)	1.0	1.4	1.9	1.7	1.5	1.2

(3+3+4)

- 3A Find the Inverse Fourier transform of $e^{-\frac{s^2}{4}}$
- 3B. Find the Fourier sine transform of xe^{-ax} , x > 0, a > 0

3C. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x^2 + y^2 - z = 3$ at the point (2, -1, 2). (3+3+4)

4A. Check whether \vec{F} is conservative? If so find its scalar potential and find the work done in moving an object in this field from (1, 2, 3) to (2, 3, 4).

$$\vec{F} = (2x\cos y - 2z^3)\mathbf{i} + (3 + 2ye^z - x^2\sin y)\mathbf{j} + (y^2e^z - 6xz^2)\mathbf{k}.$$

4B. Given that $\vec{F} = x^2 y^2 i + (yx^3 + y^2) j$. Verify Green's theorem for $\oint_C \vec{F} \cdot dr$ where the region is the triangle whose vertices are (0, 0), (4, 2) and (4, -8)

4C. Verify Divergence theorem for $\vec{F} = 4xi - 2y^2j + z^2k$ taken over the region bounded by $x^2 + y^2 = 4$, z = 0 and z = 3. (3+3+4)

5A. Solve $u_{xx} + u_{xy} - 2u_{yy} = 0$ using the transformations v = x + y, z = 2x - y.

5B. Obtain solution of $u_x + u_y = 2(x + y)u$ by method of separation of variables.

5C. Derive one dimensional wave equation with suitable assumptions.

(3+3+4)