Reg. No.								
----------	--	--	--	--	--	--	--	--

III SEMESTER B.TECH. (ECE/EEE/EI/BME)

MAKE-UP END SEMESTER EXAMINATIONS, December 2019

SUBJECT: ENGINEERING MATHEMATICS-III [MAT 2152]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date:23-12-2019

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

1A.	Obtain the Fourier series expansion of the function $f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}, f(x + 2\pi) = f(x) \text{ for all } x \text{ and hence deduce the value of} \\ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots \end{cases}$	4	
1 B .	Find the half range Fourier cosine series of $f(x) = x(2-x)$, $0 < x < 2$.	3	
1C.	Find the Fourier cosine transform of e^{-x} and hence find the sine transform of $\frac{x}{1+x^2}$	3	
2A.	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, x \le a \\ 0, x > a \end{cases}$. Hence evaluate $\int_{0}^{\infty} \frac{(\sin t - t\cos t)^2}{t^6} dt$	4	
2B.	Find the analytic function $f(z) = u + iv$ for which $u - v = e^{x}(\cos y - \sin y)$	3	
2C.	If $f(z) = u + iv$ is an analytic function, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$.	3	

Reg. No.					
----------	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL (A constituent unit of MAHE, Manipal)

3A.	Find all possible expansion of $\frac{z+2}{z^2-3z+2}$ about $z = 0$	4
3B.	Evaluate $\oint_C \frac{z^3}{(z-1)^2(z^2+4z+3)} dz$ where $C: z =4$	3
3C.	Evaluate $\oint_C (xy + y^2) dx + x^2 dy$ around the boundary of the region defined by $y = x$ and $y = x^2$ using Green's theorem.	3
4A.	Show that $\vec{F} = (y^2 \cos x + z^3)\hat{i} + (2y \sin x - 4)\hat{j} + (3xz^2 + 2)\hat{k}$ is conservative, find its scalar potential and work done in moving an object in this field from (0,1,-1) to $(\frac{\pi}{2}, -1, 2)$.	4
4B.	Find the directional derivative of $\varphi(x, y, z) = xye^{x^2+z^2-5}$ at the point (1, 3, -2) in the direction $3i - j + 4k$.	3
4C.	Evaluate $\bigoplus_{S} \vec{F} \cdot \hat{n} dS$ where $\vec{F} = 2xyi + yz^2j + xzk$ and S is the surface of the region bounded by x=0, x=2, y=0, y=2, z=0, z=2 using Divergence theorem.	3
5A.	Verify Stoke's theorem for $\vec{A} = (2x-y)i - yz^2j - y^2zk$ where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.	4
5B.	Solve: $U_{xx} - 4U_{xy} + 3U_{yy} = 0$ using the transformation $v = x + y$, $z = 3x + y$.	3
5C.	Assuming the most general solution, solve the one dimensional heat equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in a laterally insulated bar of length 10 cms whose ends are kept at zero and the initial temperature is given by $f(x) = \begin{cases} x, & 0 \le x \le 5\\ 10-x, & 5 \le x \le 10 \end{cases}$	3