Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

III SEMESTER B.Tech. (BME) DEGREE END SEM EXAMINATIONS NOVEMBER 2019

SUBJECT: NETWORK ANALYSIS (BME 2154) (REVISED CREDIT SYSTEM) Saturday, 23rd November, 2019, 8.30 AM to 11.30 AM

TIME: 3 HOURS

Instructions to Candidates:

MAX. MARKS: 50

1. Answer ALL questions.

2. Draw labeled diagram wherever necessary. Any missing data may suitably be assumed.

1A) For the circuit shown in Fig. Q1, find the current I in 2Ω resistor. You can minimize (4) and simplify the circuit using source transformation.

1B) For the circuit shown in **Fig. Q2**, find the voltage V_x . Then apply the reciprocity (3) theorem and verify it.

1C) For a series RLC resonant circuit show that, (3)

$$Z = R[1 + j2Q_o\delta] \qquad \text{Where } \delta = \frac{f - f_o}{f_o}$$

2A) For the coupled circuit shown in Fig. Q4, find the voltage V_0 across 8 Ω resistor. (4)

BME 2154

Page 1 of 4

2B) For the network shown in **Fig.Q5**, find the current I in 8Ω resistor using Thevenins (3) theorem.

2C) For the circuit shown in Fig.Q6, the circuit attains steady state when the switch is at position "a" for t<0. At t=0 the switch is changed from the position "a" to position "b". Find,

$$i(0^+), \frac{\operatorname{di}(0^+)}{dt} \text{ and } \frac{\operatorname{d}^2 i(0^+)}{dt^2}$$

V=100V
 $- C= 0.1 \mu F$
 $Fig.Q6$

3A) In the network shown in Fig Q7, the load Z_L is variable in both reactance and resistance. (4) What load Z_L will receive the maximum power? What is the maximum power?

3B) For the circuit shown in Fig.Q8, the circuit attains steady state when the switch is at position "a" for t<0. At t=0 the switch is changed from the position "a" to position "b". Solve for the current i(t) using Laplace transform and sketch the waveform.

3C) For the signal shown in Fig.Q9, obtain its Laplace transform F(s) using waveform (3) synthesis.

4A) State and prove Initial value theorem and Final value theorem.

4C) Convert h-parameters in terms of ABCD parameters.

BME 2154

Page 3 of 4

(3)

(4)

- **5B**) A pulse waveform of amplitude V volts and the pulse width of t_P is applied to a high pass RC circuit having a time constant RC. Sketch the output waveform and derive the expressions of the output. (3)
- 5C) A 2 μseconds pulse of amplitude 5 volts is applied to a low pass RC circuit whose time (3) constant is 3 μsec. Calculate and sketch the output waveform.