Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

(A constituent unit of MAHE, Manipal 576104)

III SEM B.Tech (BME) DEGREE END SEMESTER EXAMINATIONS, NOVEMBER 2019

SUBJECT: SIGNALS & SYSTEMS (BME 2155) Thursday, 28th November, 2019, 8.30 AM to 11.30 AM

Instructions to Candidates:

TIME: 3 HOURS

MAX. MARKS: 50

Answer ALL questions.

1A. Find the Z-transform X(z) and sketch the pole-zero plot with the ROC for each of the 04 following sequences:

(i)
$$x(n) = \left(\frac{1}{3}\right)^n u(n) + \left(\frac{1}{2}\right)^n u(-n-1)$$
 (ii) $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(-n-1)$

- 1B. Consider a LSI system described by the difference equation, y(n) = x(n) x(n-1). 03
 - (i) Determine the frequency response H(w) of the system and sketch its magnitude over
 - $-\pi \leq w \leq +\pi$.
 - (ii) What is the impulse response h(n) of the system?
 - (iii) Identify the system.
- 1C. Consider a continuous-time signal $x(t) = cos(5\pi t) + 0.5 cos(10\pi t)$. Determine the 03 following:
 - (i) maximum allowable value of the sampling internal, T_s .
 - (ii) discrete-time sequence x[n].
- 2A. Consider two LSI systems with impulse responses h₁[n] = δ[n 2] and h₂[n] = δ[n 3] 04 respectively. Determine the overall impulse response h[n], if the systems are connected in (i) Cascade (ii) Parallel.
- 2B. A discrete-time signal is given by x[n] = (6 n)(u[n] u[n 6]). Sketch each of the 03 following versions of the signal.
 - (i) x[4-n] (ii) x[2n-3] (iii) x[8-3n]

- 2C. (i) State the condition (based on the ROC of the system function, *H*(*z*)), for stability and 03 causality of LSI systems.
 (ii) Check for causality and stability of the LSI system defined by the unit sample response *h*[*n*] = αⁿu[*n*], using the above condition.
- 3A. Is the discrete-time system defined by $y[n] = x^2[n] + n x[n-1]$ a Linear and Shiftinvariant system? Justify.
- 3B. Explain the relationship between DTFT and DFT.
- 3C. What is the condition for an LSI system to be (a) Causal (b) Stable?
 103 Investigate the causality and stability of the following LSI systems. Justify your answer.
 (i) h[n] = 5δ[n-2]
 (ii) h[n] = u[n+2] + u[n-1] 2u[n-3]
- 4A. Consider a causal discrete-time FIR filter described by the impulse response, 04 $h(n) = \{2, 2, -2, -2\}.$
 - (i) Determine the frequency response H(w) of the filter and sketch its magnitude over

$$-\pi \leq w \leq +\pi$$
.

(ii) Identify the filter.

4B. Prove the following:

(i) $x(n) * \delta(n) = x(n)$ (ii) $x(n) * \delta(n - n_0) = x(n - n_0)$

- 4C. (i) What is the relationship between Z-transform and DTFT?
 (ii) Determine the Z-transform of the signal, x(n) = 0.5δ(n + 1) + δ(n) + 0.5δ(n 1).
 (iii) Using Z-transform, determine the DTFT of x(n).
- 5A. A stable and causal system is described by the difference equation, 04

$$y(n) + \frac{1}{4}y(n-1) - \frac{1}{8}y(n-2) = -2x(n) + \frac{5}{4}x(n-1)$$
. Determine the impulse

response of the system.

5B. A discrete-time system is both Linear & Shift-invariant. Suppose the output due to an 03 input $x[n] = \delta[n]$ is given by $y[n] = \{1, -1, 1\}$. Determine the outputs due to the following inputs:

(i) $x[n] = \delta[n-1]$ (ii) $x[n] = 2\delta[n] - \delta[n-2]$

5C. Using DTFT, evaluate the convolution, y(n) = x(n) * h(n) where $x(n) = \{1, 1, 1, 1, -1, -1\}$ and $h(n) = \delta(n-2) - \delta(n-4)$.

03

03