Exam Date & Time: 19-Nov-2019 (09:00 AM - 12:00 PM)

THIRD SEMESTER B.TECH (COMPUTER AND COMMUNICATION ENGINEERING) **END SEMESTER EXAMINATIONS, NOV 2019**

DIGITAL SYSTEMS AND COMPUTER ORGANIZATION [ICT 2171]

Marks: 50 Duration: 180 mins.

Aı	iswer a	all the questions.	
In	structi	ons to Candidates: Answer ALL questions. Missing data may be suitably assume	ed.
1)	A)	Design a self-correcting synchronous counter using T - flip flops and minimum number of external gates to count the sequence $1 \rightarrow 4 \rightarrow 6 \rightarrow 3 \rightarrow 2 \rightarrow 1$ when control input Y=0 and count the sequence $1 \rightarrow 5 \rightarrow 7 \rightarrow 6 \rightarrow 4 \rightarrow 1$ when control input Y=1. The undefined count should restart the counter from count 1	(5)
		during the next clock.	
	B)	Given $M = -9_{(10)}$ and $Q = -5_{(10)}$, multiply using Booth's Algorithm indicating	(3)
		all the steps.	
	C)	Design a 4:2 priority encoder using basic logic gates.	(2)
2)		Design a hardwired control unit for 4x4 Booth's multiplier.	
		*	(5)
	A)		
	B)	What is race around condition? How is it overcome in T – flip flop using Master-Slave configuration?	(3)
	C)	Design SR – flip flop using D – flip flop and external gates.	(2)
3)		Design a sequence detector with one input Y and one output Z. The output Z is HIGH whenever the sequence "1101" is detected, otherwise the output is LOW.	

- 3 Overlapping of the sequence is allowed. Implement using JK- flip flops and (5)A) minimum number of external gates.
 - B) A Computer system has a 32K of main memory and 4K of cache memory. The cache block size is 8 words. Calculate the tag field width for fully associative mapping, direct mapping and 4-way set associative mapping schemes. Also, (3) write the limitation of fully associative mapping and direct mapping schemes.
 - C) Differentiate Carry Look-ahead Adder, Carry Save Adder and Carry Propagation (2)Adder with an example

4)		Design a code converter to convert a decimal digit represented in 5 2 1 1(self-complementing) to a decimal digit represented in excess-3 code, using 74138 ICs and external gates.	(5
	A)		
	B)	Using only JK – flip flops, design a MOD 10 counter circuit to generate an output waveform with 50% duty cycle. Using this, generate the sequence 0001111100.	(3
	C)	Design a 3 – bit universal shift register using D – flip flops and Multiplexers.	(2)
5)		Using 7493 ICs, 7485ICs and external gates, design a 2 – digit decimal counter which counts from 00 to N (00 < N < 99) and repeats.	(5)
	A)		
	B)	Design a 3-bit magnitude comparator using minimum number of 4:1 and 2:1 multiplexers ONLY.	(3)
	C)	Explain the operation of a Direct Memory Access System.	(2)
	Total		