Reg. No.

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, DECEMBER 2019

ANALOG SYSTEM DESIGN [ELE 2151]

REVISED CREDIT SYSTEM

Time: 3 Hours	Date: 02 JANUARY 2020	Max. Marks: 50
Instructions to Candidates:		

 $V_{DD} = 5V$

(**t**) I_Q = 30 pr →

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

1A. Determine V_{GS} and V_{DS} . Assume $V_{TH} = 1.2V$ and $\mu_n C_{ox} \left(\frac{W}{L}\right) = 1 m A / V^2$

(02)

1B. The transistor has $V_T = 1V$ and $\mu_n C_{ox}\left(\frac{W}{L}\right) = 2mA/V^2$. Determine V_{GS} , I_D , V_0 .

1C. Assuming circuit parameters, $I_{REF} = 120\mu A$, $V_{DD} = 3V$ and $V_{SS} = -3V$, transistor parameters of $V_{TH} = 0.4V$, $\frac{1}{2}\mu_n C_{0x}\left(\frac{W}{L}\right)_1 = 50\mu A/V^2$, $\frac{1}{2}\mu_n C_{ox}\left(\frac{W}{L}\right)_2 = 30\mu A/V^2$, $\frac{1}{2}\mu_n C_{ox}\left(\frac{W}{L}\right)_3 = 60\mu A/V^2$. Determine I_{Q1} , V_{GS1} , V_{GS3} and V_{DS1} . (05)

(03)

 $Q V_{DD}$

- **2A.** Write a note on channel pinch off.
- **2B.** With suitable circuit and small signal model, derive the expression for the gain of common drain MOS Amplifier. **(03)**
- 2C. Draw the circuit of an RC coupled Amplifier and state the importance of all the capacitors and resistors. (05)
- **3A.** Explain the working of voltage to current converter with grounded load.
- **3B.** Design a single OP-AMP based circuit to get $V_0 = 8V_a 6V_b 2V_c$. Assume feedback resistor and noninverting terminal to ground resistor as $12K\Omega$.
- **3C.** Explain the significance of buffer in instrumentation amplifier and derive the overall gain in the instrumentation amplifier.
- **4A.** Draw the opamp based square wave generator obtain the component values to get a pulse of 2kHz frequency. Assume C=0.01 μ F and feedback factor β =0.46.
- **4B.** Determine v_P , v_N , v_o for the OPAMP based circuits.

(03)

(05)

(03)

- **4C.** Design a first order band rejection filter to reject the frequencies in the range 2kHz-5kHz, with a pass band gain of 2. Assume C=0.01µF if required. Sketch the filter circuit diagram.
- 5A. Draw the circuit of a half wave precision rectifier and explain the working. (02)
- **5B.** Discuss the working of phase locked loop.
- **5C.** Design a 555 timer based circuit to generate a pulse train of 1kHz frequency with 50% duty cycle. What changes are required to obtain 75% duty cycle? Assume C= 0.01μ F if required. (05)

ELE 2151

(05)

(03)

(02)

(02)

(02)