

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

DEPARTMENT OF SCIENCES, I SEMESTER M.Sc. (Applied Mathematics & Computing) END SEMESTER MAKE-UP EXAMINATIONS, December 2019 Subject: Algebra [Code: MAT 4103] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date: 24 December 2019	MAX. MARKS: 50
---------------	------------------------	----------------

Note: (i) Answer ALL questions; (ii) Draw diagrams, and write equations wherever necessary

1A. Define 'subgroup' of a group and list all the subgroups of Z_{16} . Also draw the lattice diagram of the subgroups of Z_{16} .

1B. Prove that the ring of integers is a Euclidean domain.

1C. If R is a ring with 1 and I is a left ideal in R such that $I \neq R$, then prove that there is a maximal left ideal M such that $I \subseteq M$.

(3+3+4)

2A. Suppose R is a ring with 1. Let I be a left ideal of R. Prove that the conditions: (i) I = R, (ii) $1 \in R$, (iii) I contains a unit, are equivalent.

2B. State Eisenstein's Criterion for irreducibility. Prove that the polynomial $f(x) = 12 - 3x^2 + 9x^4 - 25x^5$ is irreducible over rational numbers.

2C. Prove that a Euclidean domain R has unity and whose group of units is given by $U(R) = \{a \in R^* | d(a) = d(1)\}$ where d: $R^* \to Z^+$.

(3+3+4)

3A. Let G be a group. Define a * $x = axa^{-1}$ for all a, $x \in G$. Verify whether G is a G-set. Prove that any homomorphism $\phi: G \to S_x$ induces an action of G onto X.

3B. Find order of the given elements (1, 2, 8, 12), (2, 4, 12, 16) in the direct product $Z_4 \times Z_{12} \times Z_{20} \times Z_{24}$.

3C. Let H and K be subgroups of G. Prove that HK is a subgroup of G if and only if HK = KH. (3 + 3+ 4)

4A. Let G be a finite group of order p^n , where p is a prime number and n > 0. Then prove that $Z \cap N$ is non-trivial for any non-trivial normal subgroup N of G.

4B. State and prove first homomorphism theorem of groups.

4C. If R is a commutative ring with unit element and M is an ideal of R, then prove that M is maximal if and only if R/M is a filed.

(3 + 3 + 4)

5A. State and prove Lagrange's theorem.

5B. Let G be a finite group and X a finite G-set. Prove that G_x is a subgroup of G. If r is the number of orbits in X under G, then prove that $r \cdot |G| = \sum_{g \in G} |X_g|$. **5C.** Prove that any two p-Sylow subgroups are conjugate.

(3 + 3 + 4)