

DEPARTMENT OF SCIENCES, III SEMESTER M.Sc (Applied Mathematics and Computing)

END SEMESTER EXAMINATIONS, November 2019 Subject [Graph Theory-MAT 5105] (REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date: 20.11.201	9 MAX. MARKS: 50
Note: (i) Answer all F	IVE FULL questions	(ii) All questions carry equal marks (3+3+4)

1. A. If G is a simple (p,q) graph with $p \ge 3$ and $\delta(G) \ge \frac{p}{2}$, then show that G is Hamiltonian.

B.With usual notation prove that, for a graph $G, K(G) \le \lambda(G) \le \delta(G)$.

C. Show that every planar graph is five colourable.

- 2. A. If G is a cycle of length n then, $\pi_k(G) = (k-1)^n + (-1)^n (k-1)$.
 - B. Using the formula $\pi_k(G) = \pi_k(G e) \pi_k(G \cdot e)$, find $\pi_k(K_{1,3})$.
 - C. Without assuming any result, prove that every self complementary graph has diameter either 2 or 3.
- 3. A. With usual notation show that the Ramsey number R(m, n) satisfies the relation $R(m, n) \le R(m - 1, n) + R(m, n - 1)$.
 - B. If G is connected graph which is neither an odd cycle nor a complete graph, then show that, $\chi(G) \leq \Delta(G)$.
 - C. Define the path matrix P_n and reduced incidence matrix Q_n of a tree on n vertices. Show that $Q_n^{-1} = P_n$.

(PTO)

4. A. With usual notation, prove that $\alpha_1 + \beta_1 = p$ where p is the number of vertices in G.

B. Let G be a graph on n vertices and Q(G) be its oriented incidence matrix. Show that columns $j_1, j_2, ..., j_k$ of Q(G) are linearly independent if and only if the corresponding edges of G induce an acyclic graph. C. Show that for every positive integer k, there exists k-chromatic graph with no triangle.

- 5. A. Show that if G is a tree with $\Delta(G) \ge k$, then G has at least k vertices of degree 1.
 - B. For any (p,q) graph G with line graph L(G), show that $A(L(G)) = B^T B - 2I_q$ where B is the incidence matrix of G and A(L(G)) is the adjacency matrix of L(G).
 - C.Let G be a bipartite graph with bipartition (X, Y). Then show that G contains a matching that saturates every vertex of X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$.
