

Reg.					
No.					

DEPARTMENT OF SCIENCES, I SEMESTER M.Sc (PHYSICS) END SEMESTER EXAMINATIONS, NOVEMBER 2019

MATHEMATICAL METHODS OF PHYSICS [PHY 4101]

(REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date: 15-11-2019	MAX. MARKS: 50
Note: (i) Answer ALL questions		

(ii) Draw diagrams wherever necessary

1A. Define residue of the function of complex variable. How do you calculate the residue for m^{th} order (m > 1) pole? State and prove residue theorem.

1B. Using residue theorem, evaluate
$$I = \int_0^{2\pi} \frac{\cos 2\theta \, d\theta}{5 - 4 \cos \theta}$$
 (5+5)

- 2A. Find the inverse Laplace transform of the function $g(s) = \frac{1}{(s^2 + a^2)(s^2 + b^2)}$, $a^2 \neq b^2$
- 2B. State and prove Fourier integral theorem. What is the value of the integral at points of discontinuity?

(6+4)

- 3A. Using the generating function, $(1 2xt + t^2)^{-1/2}$, obtain the series form of Legendre's function $P_n(x)$. Show that $P_n(-x) = (-1)^n P_n(x)$.
- 3B. The generating functions for Bessel function and Hermite function are $e^{\frac{x}{2}(t-\frac{1}{t})}$ and e^{2xt-t^2} respectively. Prove the following recurrence relations.

(i)
$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x)$$

(ii) $2n H_n(x) = \frac{1}{x} J_n(x)$

- (ii) $2nH_{n-1}(x) = H'_n(x)$
- 4A. Define a permutation group. Obtain the multiplication table. Show that permutation of n
- identical objects form a group (example of a S_3 group). 4B. Show that gradient of a scalar field is a covariant tensor
- 4C. Define (i) Contravariant tensor of rank one (ii) Covariant tensor of rank one (iii) mixed tensor of rank two.

(5+2+3)

5A. State Gauss' theorem. Obtain an expression for divergence of vector field in curvilinear coordinates.

5B. Find the eigen values and eigen vectors of the following matrix, $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.

(6+4)