

DEPARTMENT OF SCIENCES, I SEMESTER M.Sc. (Physics) END SEMESTER EXAMINATIONS, NOVEMBER 2019

QUANTUM MECHANICS - I [PHY 4105]

(REVISED CREDIT SYSTEM-2017)

Time: 3 Hours	Date: 21/11/2019	MAX. MARKS: 50

Note: Answer ALL questions

- 1.
- a) Define inner (scalar) product of two vectors in a linear vector space (LVS). Discuss its properties.
- b) Consider a complete orthonormal basis set $\{|\phi_1\rangle, |\phi_2\rangle, |\phi_3\rangle, ..., |\phi_N\rangle\}$ in a LVS. Express the general orthonormality and completeness relation for this basis in the Dirac notation.
- c) Consider a state $|\psi\rangle = \frac{1}{\sqrt{2}} |\phi_1\rangle + \frac{1}{\sqrt{5}} |\phi_2\rangle + \frac{1}{\sqrt{10}} |\phi_3\rangle$, where $|\phi_n\rangle$ are orthonormal eigenkets of an operator \hat{O} such that $\hat{O} |\phi_n\rangle = n^2 |\phi_n\rangle$. Find the expectation value of \hat{O} in the state $|\psi\rangle$.

$$(3 + 2 + 3 = 8 \text{ Marks})$$

2.

- a) Derive the general uncertainty relation between two operators.
- b) Prove that:

$$\frac{d\langle \hat{x} \rangle}{dt} = \frac{1}{m} \langle \hat{p} \rangle$$

(7 + 3 = 10 Marks)

(4 + 3 + 3 = 10 Marks)

3.

- a) Prove that for a Hermitian operator, all of its eigenvalues are real, and the eigenvectors corresponding to different eigenvalues are orthogonal.
- b) Show that the operator, $\hat{p}_x = -i\hbar \frac{d}{dx}$ is Hermitian.
- c) Prove that the stationary states of a particle in an 1-D infinite potential well are orthogonal:

$$\int_0^L \psi_m^* \psi_n dx = 0; \quad (m \neq n)$$

4.

5.

- a) Consider the 1-D harmonic oscillator Hamiltonian, $\hat{H} = (\hat{a}_+ \hat{a}_- + \frac{1}{2})\hbar\omega$, where \hat{a}_+ and \hat{a}_- are the raising and lowering operators. If ψ is an eigenfunction of \hat{H} with an eigenvalue *E*, prove that, $\hat{a}_+\psi$ is also an eigenfunction of \hat{H} with eigenvalue $E + \hbar\omega$.
- b) Solve the Schrödinger equation for a particle in a finite potential well (bound state only).

$$(2 + 8 = 10 \text{ Marks})$$

a) The 3-D Schrödinger equation in spherical polar coordinates is given by: $-\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2 \psi}{\partial \phi^2} \right) \right] + V\psi = E\psi$ Assuming the potential to be central, reduce the above equation to three

Assuming the potential to be central, reduce the above equation to three ordinary differential equations for the variables r, θ, ϕ using the variable-separable method.

- b) The ground state radial wave function of hydrogen atom is given by $R_{10}(r) = \frac{c_0}{a}e^{-r/a}$. Find the constant c_0 by normalization.
- c) Consider two identical particles in an infinite potential well. Find the ground state energy and wave function for this system if the two particles are: a) Distinguishable b) Bosons c) Fermions.

(7 + 2 + 3 = 12 Marks)
