

| Reg. No. |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|--|

## DEPARTMENT OF SCIENCES, III SEMESTER M.Sc. (Physics) END SEMESTER EXAMINATIONS, NOVEMBER 2019

## ATOMIC AND MOLECULAR PHYSICS [PHY 5101]

## (REVISED CREDIT SYSTEM - 2017)

|--|

Note: (i) Answer ALL questions

(ii) Draw diagrams and write equations wherever necessary

- 1. (a) Explain the theory of Normal Zeeman Effect.
  - (b) How does Natural broadening contribute to the line width of spectra?
  - (c) What is meant by fine structural of spectral lines. [5+3+2]
- 2. (a) What are Einstein's coefficients with reference to the laser? Derive the relation between them.
  - (b) What is chemical shift during resonance absorption. Explain with an example.
  - (c) <sup>13</sup>C shows NMR spectrum, however <sup>12</sup>C does not show NMR spectrum. Why?

[5+3+2]

- 3. (a) What is centrifugal distortion? Explain the effect of centrifugal distortion on the moment of inertia and energy of a diatomic molecule.
  - (b) Homonuclear diatomic molecules do not show vibrational spectra. Why?

(c) The fundamental and first overtone transitions of CO are centred at 2143.3cm<sup>-1</sup> and 4260.0 cm<sup>-1</sup>. Calculate the equilibrium oscillation frequency, the anharmonicity constant and force constant of the molecule. The reduced mass of CO molecule is  $1.1385 \times 10^{-26}$  kg. [3+2+5]

- 4. (a) Explain quantum theory of Raman scattering.
  - (b) How do you correlate Raman and IR active vibrations in a molecule.

(c) The fundamental band for HCl is centered at 2886 cm<sup>-1</sup>. Assume that the internuclear distance is  $1.276 \times 10^{-10}$  m, calculate the wave number of the first two lines of each of the P and R branches of HCl. [3+2+5]

- 5. (a) What is the basic principle of photoelectron spectroscopy (PES)?
  - (b) List the necessary conditions required to get Mossbauer spectra?

(c) The values of equilibrium oscillation frequency and anharmonicity constant for lower and upper states of CO are 2170.21 cm<sup>-1</sup>, 0.0062 and 1515.61 cm<sup>-1</sup>, 0.0114 respectively. The (0,0) transitions is observed at 64746.55 cm<sup>-1</sup>. Calculate the energy difference of the two electronic states. [3+2+5]